光合作用 1.光合色素 叶绿体化学成分的显著特点是含有色素。色素可分为三类:叶绿素、类胡萝卜素和藻胆素。藻胆素仅存在于一些藻类中。 叶绿素中主要是叶绿素a和b。叶绿素b只存在于高等植物和绿藻中,其他藻类大多没有叶绿素b。各种色素都能吸收日光,少数叶绿素a还能将光能转换为电能,称为作用中心色素;绝大多数色素(包括大部分叶绿素a)只有收集光能的作用,称为聚光色素,它们吸收的光能只有传到作用中心色素后才能起光合作用。 叶绿素溶液在透射光下呈绿色,反射光下呈红色,这种现象称为荧光现象。叶绿素的生物合成是以谷氨酸或α-酮戊二酸为原料,在光照条件下还原而成。光照、温度、矿质元素等会影响叶绿素的形成。 2.光合作用的机理 光合作用过程包括一系列的光化学步骤和物质的转变,大致可分为下列三大步骤:光能的吸收、传递和转换过程(通过原初反应完成);光能转变为活跃的化学能过程(通过电子传递和光合磷酸化完成);活跃的化学能转变为稳定的化学能过程(通过碳同化完成)。前两个步骤基本属于光反应,第三个步骤属于暗反应。高等植物的光合碳同化过程有C3、C4和CAM三条途径。 (1)C3途径 C3途径是卡尔文等提出的C02同化途径,故称为卡尔文循环。这个循环中的C02受体是核酮糖-1,5—二磷酸(RuBP),在RuBP羧化酶催化下,C02固定后形成的最初产物3—磷酸甘油酸(PGA)是一种三碳化合物,故该途径称为C3途径(图l—2-10)。C3途径是所有植物光合作用碳同化的基本途径。只有C3途径的植物,称为C3植物。  (2)C4途径 一些起源于热带的植物,如甘蔗、玉米和高梁等,它们固定C02的最初产物不是磷酸甘油酸,而是草酰乙酸(OAA)等四碳二羧酸,故命名为C4途径。通过C4途径固定C02的植物称为C4植物。 C4途径的C02受体是叶肉细胞细胞质中的磷酸烯醇式丙酮酸(PEP),在PEP羧化酶催化下,固定C02生成草酰乙酸,草酰乙酸在脱氢酶的作用下被还原为苹果酸(有些品种形成天冬氨酸)。苹果酸离开叶肉细胞,进入维管束鞘细胞,脱羧放出C02,为RuBP固定进入卡尔文循环;脱羧后形成的丙酮酸再回到叶肉细胞,转变为PEP,继续固定C02(图1-2-11)。  C4植物实际上是在C3途径的基础上,多一个固定C02途径。 (3)CAM(景天科酸代谢) 景天科植物如仙人掌、落地生根等的叶子,气孔晚上开放,吸进C02,与PEP结合,形成草酰乙酸,再还原为苹果酸,积累于液泡中。白天气孔关闭,液泡中的苹果酸便运到细胞质,脱羧放出C02,参与卡尔文循环,形成淀粉等(图l—2—12)。因此植物在晚上有机酸含量高,糖类含量下降;白天则相反。这种有机酸合成有日变化的代谢类型称为景天科酸代谢(简称CAM)。这与植物适应干旱地区有关。  3.光呼吸 光呼吸是指植物在光照下,在光合作用的同时发生吸收02、释放C02的呼吸。一般生活细胞的呼吸在光照或黑暗中都可以进行。黑暗中的呼吸相对地称为暗呼吸。 光呼吸的主要过程是细胞过氧化物体中乙醇酸的氧化,乙醇酸来自叶绿体。叶绿体中的RuBP羧化酶既是羧化酶,催化CO2与RuBP结合,又是加氧酶,催化02与RuBP结合。在光照下,02浓度高时,RuBP加氧酶催化02与RuBP结合,产生乙醇酸;乙醇酸进入过氧化物体,被氧化产生甘氨酸;甘氨酸进入线粒体,被分解产生C020图1—2—13是光呼吸的全过程。在整个途径中,02的吸收发生于叶绿体和过氧化物体,C02的放出发生于线粒体中,因此,光呼吸是在叶绿体、过氧化物体和线粒体三种细胞器的协同下完成的。光呼吸使有机物分解成C02,但不产生ATP或NADPH,是一个耗能过程。  4.C3植物和C4植物的光合特征 一般来说,C4植物比C3植物具有较强的光合作用、较低的光呼吸。这是因为:C4植物的PEP羧化酶对C02的亲和力比C3植物的RuBP羧化酶大得多,C4植物能够利用低浓度的C02(当外界干旱气孔关闭时,C4植物能利用细胞间隙里含量低的C02继续生长)。而且C4植物具有独特的“花环型”结构,叶肉细胞与维管束鞘细胞分工配合,在叶肉细胞内以C4途径固定C02,形成C4-二羧酸向维管束鞘细胞运输,起了“C02”源的作用,为维管束鞘中进行的C3途径提供高浓度的COa,使植物同化C02的能力比C3植物强,光合效率也比较高;另外,高浓度的C02足以和02竞争而使RuBP羧化酶接受C02而不与02结合,因此,C4植物在光照下只产生少量的乙醇酸,光呼吸低于C3植物。 5.影响光合作用的主要因素 衡量光合作用强度的指针是光合速率,它以每小时每平方分米叶面积吸收CO2毫克数表示。影响光合作用的外部因素有:光照强度、C02、温度、水分和矿质元素等;影响光合作用的内部因素有:叶绿素的含量、叶片的年龄和光合作用产物的积累等。下面主要介绍光照和C02对光合作用的影响。 (1)光照强度 在光照强度较低时,光合速率随光照强度的增加而增加,当光照强度达到一定值时,光合速率就不再增加,这种现象称为光饱和现象。开始达到光饱和现象时的光照强度称为光饱和点。阳生植物比阴生植物的光饱和点高,植物群体比单株植物的光饱和点高。 达到光饱和点以上时植物的光合速率表示植物同化C02的最大能力。在光饱和点以下,光合速率随光照强度的减少而降低,到某一光照强度时,光合作用吸收的CO2与呼吸作用释放的C02相等,这时的光照强度称为光补偿点。在光补偿点时,无光合产物的积累,而晚间还要消耗有机物,因此从全天来看,植物所需的最低光照强度,必须高于光补偿点,才能使植物正常生长。通常阳生植物比阴生植物光补偿点高。 (2)C02 C02是光合作用的原料,对光合速率影响很大。光合作用吸收的C02量等于呼吸作用放出的C02量时的外界C02浓度,称为C02补偿点。C4植物能利用低浓度的C02,所以C02补偿点较低,称为低补偿点植物;C3植物称为高补偿点植物。 在一定范围内,光合速率随C02浓度增加而增加,到一定程度时再增加C02浓度,光合速率不再增加,这时外界的CO2浓度,称为C02饱和点。 CO2浓度和光照强度对植物光合速率的影响是相互联系的。植物的C02饱和点随着光照强度的增加而提高;光饱和点也随着C02浓度的增加而增加。 三、呼吸作用 呼吸作用中糖的分解代谢途径有三种:糖酵解、三羧酸循环和戊糖磷酸途径(详见第一章)。下面介绍影响呼吸作用的主要因素。 不同植物、不同器官、同一器官的不同组织、同一器官不同年龄的呼吸速率都不同。一般来说,生长快的植物呼吸速率快,如小麦的呼吸速率比仙人掌快得多;生长旺盛的、幼嫩的器官呼吸速率快,生殖器官的呼吸速率比营养器官快;形成层的呼吸速率快,韧皮部次之,木质部较低。 温度、氧气和C02是影响呼吸速率的主要外界因素。温度影响呼吸速率主要是影响呼吸酶的活性,在最低与最适温度之间,呼吸速率随温度的增高而加快,超过最适温度,也会下降。环境中C02浓度增加时,呼吸速率会减慢。机械损伤会显著加快组织的呼吸速率。 w.w.w.k.s.5.u.c.o.m

【点此下载】