课时目标 1.结合实例,理解充分条件、必要条件、充要条件的意义.2.会判断(证明)某些命题的条件关系.  1.如果已知“若p,则q”为真,即p?q,那么我们说p是q的____________,q是p的____________. 2.如果既有p?q,又有q?p,就记作________.这时p是q的______________条件,简称________条件,实际上p与q互为________条件.如果pq且qp,则p是q的________________________条件.  一、选择题 1.“x>0”是“x≠0”的(  ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.设p:x<-1或x>1;q:x<-2或x>1,则綈p是綈q的(  ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件[来源:] D.既不充分也不必要条件 3.设集合M={x|0b________ac2>bc2; (2)ab≠0________a≠0. 8.不等式(a+x)(1+x)<0成立的一个充分而不必要条件是-20)在[1,+∞)上单调递增的充要条件是__________. 三、解答题 10.下列命题中,判断条件p是条件q的什么条件: (1)p:|x|=|y|,q:x=y. (2)p:△ABC是直角三角形,q:△ABC是等腰三角形; (3)p:四边形的对角线互相平分,q:四边形是矩形. 11.已知P={x|a-40”?“x≠0”,反之不一定成立. 因此“x>0”是“x≠0”的充分而不必要条件.] 2.A [∵q?p,∴綈p?綈q,反之不一定成立, 因此綈p是綈q的充分不必要条件.] 3.B [因为NM.所以“a∈M”是“a∈N”的必要而不充分条件.] 4.A [把k=1代入x-y+k=0,推得“直线x-y+k=0与圆x2+y2=1相交”;但“直线x-y+k=0与圆x2+y2=1相交”不一定推得“k=1”.故“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分而不必要条件.] 5.A [l⊥α?l⊥m且l⊥n,而m,n是平面α内两条直线,并不一定相交,所以l⊥m且l⊥n不能得到l⊥α.] 6.B [当a<0时,由韦达定理知x1x2=<0,故此一元二次方程有一正根和一负根,符合题意;当ax2+2x+1=0至少有一个负数根时,a可以为0,因为当a=0时,该方程仅有一根为-,所以a不一定小于0.由上述推理可知,“a<0”是“方程ax2+2x+1=0至少有一个负数根”的充分不必要条件.] 7.(1)  (2)? 8.a>2 解析 不等式变形为(x+1)(x+a)<0,因当-2-a,即a>2. 9.b≥-2a 解析 由二次函数的图象可知当-≤1,即b≥-2a时,函数y=ax2+bx+c在 [1,+∞)上单调递增. 10.解 (1)∵|x|=|y|x=y, 但x=y?|x|=|y|, ∴p是q的必要条件,但不是充分条件. (2)△ABC是直角三角形△ABC是等腰三角形. △ABC是等腰三角形△ABC是直角三角形. ∴p既不是q的充分条件,也不是q的必要条件. (3)四边形的对角线互相平分四边形是矩形. 四边形是矩形?四边形的对角线互相平分. ∴p是q的必要条件,但不是充分条件. 11.解 由题意知,Q={x|1
【点此下载】