2.4 二次函数 典例精析 题型一 求二次函数的解析式 【例1】已知二次函数y=f(x)的图象的对称轴方程为x=-2,在y轴上的截距为1,在x轴上截得的线段长为2,求f(x)的解析式. 【解析】设f(x)=ax2+bx+c (a≠0),由已知有  解得a=,b=2,c=1,所以f(x)=x2+2x+1. 【点拨】求二次函数的解析式,要根据已知条件选择恰当的形式,三种形式可以相互转化,若二次函数图象与x轴相交,则两点间的距离为|x1-x2|=. 【变式训练1】已知二次函数y=x2+bx+c的图象过点A(c,0),且关于直线x=2对称,则这个二次函数的解析式是    . 【解析】由已知x=c为它的一个根,故另一根为1. 所以1+b+c=0,又-=2?b=-4,所以c=3. 所以f(x)=x2-4x+3. 题型二 二次函数的最值 【例2】已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3). (1)若方程f(x)+6a=0有两个相等实根,求f(x)的解析式; (2)若f(x)的最大值为正数,求a的取值范围. 【解析】(1)因为f(x)+2x>0的解集为(1,3). 所以f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a.① 由f(x)+6a=0?ax2-(2+4a)x+9a=0,② 由②知,Δ=[-(2+4a)]2-4a×9a=0?5a2-4a-1=0,所以a=1或a=-. 因为a<0,所以a=-,代入①得f(x)=-x2-x-. (2)由于f(x)=ax2-2(1+2a)x+3a=a(x-)2-, 又a<0,可得[f(x)]max=-. 由?a<-2-或-2+<a<0. 【点拨】(1)利用Δ=0;(2)利用配方法. 【变式训练2】已知二次函数y=x2-2x+3在区间[0,m]上有最大值3和最小值2,则m的取值范围是    . 【解析】[1,2]. 题型三 二次函数在方程、不等式中的综合应用 【例3】设函数 f(x)=ax2+bx+c (a≠0),x1<x2,f(x1)≠f(x2),对于方程f(x)=[ f(x1)+f(x2)],求证: (1)方程在区间(x1,x2)内必有一解; (2)设方程在区间(x1,x2)内的根为m,若x1,m-,x2成等差数列,则-<m2. 【证明】(1)令g(x)=f(x)-[ f(x1)+f(x2)], 则g(x1)g(x2)=[ f(x1)-f(x2)] [ f(x2)-f(x1)]=- [ f(x1)-f(x2)]2<0, 所以方程g(x)=0在区间(x1,x2)内必有一解. (2)依题意2m-1=x1+x2,即2m-x1-x2=1, 又f(m)=[ f(x1)+f(x2)],即2(am2+bm+c)=ax+bx1+c+ax+bx2+c. 整理得a(2m2-x-x)+b(2m-x1-x2)=0, a(2m2-x-x)+b=0, 所以-=m2-<m2. 【点拨】二次方程ax2+bx+c=0的根的分布问题,一般情况下,需要从三个方面考虑:①判别式;②区间端点对应二次函数的函数值的正负;③相应二次函数的对称轴x=-与区间的位置关系. 【变式训练3】已知f(x)=(x-a)(x-b)-2(a<b),α,β是f(x)=0的两根(α<β),则实数α,β,a,b大小关系为(  ) A.α<a<b<β B.a<α<β<b C.a<α<b<β D.α<a<β<b 【解析】A. 总结提高 1.二次函数的表达式有多种形式,形式的选择要依据题目的已知条件和所求结论的特征而定. 2.利用二次函数的知识解题始终要把握二次函数图象的关键要素:①开口方向;②对称轴;③与坐标轴的交点. 3.二次函数、一元二次方程和一元二次不等式是一个有机的整体,相互渗透,解题时要注意三者的相互转化,重视用函数思想处理方程和不等式问题.

【点此下载】