第6讲 离散型随机变量的均值与方差 【2013年高考会这样考】 1.考查有限个值的离散型随机变量均值、方差的概念. 2.利用离散型随机变量的均值、方差解决一些实际问题. 【复习指导】 均值与方差是离散型随机变量的两个重要数字特征,是高考在考查概率时考查的重点,复习时,要掌握期望与方差的计算公式,并能运用其性质解题.  基础梳理 离散型随机变量的均值与方差 若离散型随机变量X的分布列为 X x1 x2 … xi … xn  P p1 p2 … pi … pn    两个防范 在记忆D(aX+b)=a2D(X)时要注意:D(aX+b)≠aD(X)+b,D(aX+b)≠aD(X). 三种分布 (1)若X服从两点分布,则E(X)=p,D(X)=p(1-p); (2)X~B(n,p),则 E(X)=np,D(X)=np(1-p); (3)若X服从超几何分布, 则E(X)=n. 六条性质 (1)E(C)=C(C为常数) (2)E(aX+b)=aE(X)+b(a、b为常数) (3)E(X1+X2)=EX1+EX2 (4)如果X1,X2相互独立,则E(X1·X2)=E(X1)E(X2) (5)D(X)=E(X2)-(E(X))2 (6)D(aX+b)=a2·D(X) 双基自测 1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为(  ). A.  B. C. D.2 解析 由题意知a+0+1+2+3=5×1,解得,a=-1. s2= =2. 答案 D 2.已知X的分布列为 X -1 0 1  P     设Y=2X+3,则E(Y)的值为(  ). A. B.4 C.-1 D.1 解析 E(X)=-+=-, E(Y)=E(2X+3)=2E(X)+3=-+3=. 答案 A 3.(2010·湖北)某射手射击所得环数ξ的分布列如下: ξ 7 8 9 10  P x 0.1 0.3 y  已知ξ的期望E(ξ)=8.9,则y的值为________. A.0.4 B.0.6 C.0.7 D.0.9 解析 x+0.1+0.3+y=1,即x+y=0.6.① 又7x+0.8+2.7+10y=8.9,化简得7x+10y=5.4.② 由①②联立解得x=0.2,y=0.4. 答案 A 4.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则(  ). A.n=8,p=0.2 B.n=4,p=0.4 C.n=5,p=0.32 D.n=7,p=0.45 解析 ∵X~B(n,p),∴E(X)=np=1.6, D(X)=np(1-p)=1.28,∴ 答案 A 5.(2010·上海)随机变量ξ的概率分布列由下表给出: ξ 7 8 9 10  P 0.3 0.35 0.2 0.15  该随机变量ξ的均值是________. 解析 由分布列可知E(ξ)=7×0.3+8×0.35+9×0.2+10×0.15=8.2. 答案 8.2   考向一 离散型随机变量的均值和方差 【例1】?A、B两个代表队进行乒乓球对抗赛,每队三名队员,A队队员是A1、A2、A3,B队队员是B1、B2、B3,按以往多次比赛的统计,对阵队员之间的胜负概率如下: 对阵队员 A队队员胜的概率 A队队员负的概率  A1和B1    A2和B2    A3和B3    现按表中对阵方式出场胜队得1分,负队得0分,设A队,B队最后所得总分分别为X,Y (1)求X,Y的分布列;(2)求E(X),E(Y). [审题视点] 首先理解X,Y的取值对应的事件的意义,再求X,Y取每个值的概率,列成分布列的形式,最后根据期望的定义求期望. 解 (1)X,Y的可能取值分别为3,2,1,0. P(X=3)=××=, P(X=2)=××+××+××=, P(X=1)=××+××+××=, P(X=0)=××=; 根据题意X+Y=3,所以 P(Y=0)=P(X=3)=,P(Y=1)=P(X=2)=, P(Y=2)=P(X=1)=,P(Y=3)=P(X=0)=. X的分布列为 X 0 1 2 3  P       Y的分布列为 Y 3 2 1 0  P      (2)E(X)=3×+2×+1×+0×=; 因为X+Y=3,所以E(Y)=3-E(X)=.  (1)求离散型随机变量的期望关键是写出离散型随机变量的分布列,然后利用公式计算. (2)由X的期望、方差求aX+b的期望、方差是常考题之一,常根据期望和方差的性质求解. 【训练1】 (2011·四川)本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四小时. (1)求甲、乙两人所付的租车费用相同的概率; (2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望E(ξ). 解 (1)由题意得,甲、乙在三小时以上且不超过四小时还车的概率分别为,. 记甲、乙两人所付的租车费用相同为事件A,则 P(A)=×+×+×=. 所以甲、乙两人所付的租车费用相同的概率为. (2)ξ可能取的值有0,2,4,6,8. P(ξ=0)=×=; P(ξ=2)=×+×=; P(ξ=4)=×+×+×=; P(ξ=6)=×+×=; P(ξ=8)=×=. 甲、乙两人所付的租车费用之和ξ的分布列为 ξ 0 2 4 6 8  P       所以E(ξ)=0×+2×+4×+6×+8×=. 考向二 均值与方差性质的应用 【例2】?设随机变量X具有分布P(X=k)=,k=1,2,3,4,5,求E(X+2)2,D(2X-1),. [审题视点] 利用期望与方差的性质求解. 解 ∵E(X)=1×+2×+3×+4×+5×==3. E(X2)=1×+22×+32×+42×+52×=11. D(X)=(1-3)2×+(2-3)2×+(3-3)2×+(4-3)2×+(5-3)2×=(4+1+0+1+4)=2. ∴E(X+2)2=E(X2+4X+4) =E(X2)+4E(X)+4=11+12+4=27. D(2X-1)=4D(X)=8,==.  若X是随机变量,则η=f(X)一般仍是随机变量,在求η的期望和方差时,熟练应用期望和方差的性质,可以避免再求η的分布列带来的繁琐运算. 【训练2】 袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球,X表示所取球的标号. (1)求X的分布列、期望和方差; (2)若η=aX+b,E(η)=1,D(η)=11,试求a,b的值. 解 (1)X的分布列为 X 0 1 2 3 4  P       ∴E(X)=0×+1×+2×+3×+4×=1.5. D(X)=(0-1.5)2×+(1-1.5)2×+(2-1.5)2×+(3-1.5)2×+(4-1.5)2×=2.75. (2)由D(η)=a2D(X),得a2×2.75=11,即a=±2. 又E(η)=aE(X)+b, 所以当a=2时,由1=2×1.5+b,得b=-2. 当a=-2时,由1=-2×1.5+b,得b=4. ∴或即为所求. 考向三 均值与方差的实际应用 【例3】?(2011·福建)某产品按行业生产标准分成8个等级,等级系数X依次为1,2,…,8,其中X≥5为标准A,X≥3为标准B.已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准. (1)已知甲厂产品的等级系数X1的概率分布列如下所示: X1 5 6 7 8  P 0.4 a b 0.1  且X1的数学期望E(X1)=6,求a,b的值; (2)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望. (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由. 注:(1)产品的“性价比”=; (2)“性价比”大的产品更具可购买性. [审题视点] (1)利用分布列的性质P1+P2+P3+P4=1及E(X1)=6求a,b值. (2)先求X2的分布列,再求E(X2),(3)利用提示信息判断. 解 (1)因为E(X1)=6,所以5×0.4+6a+7b+8×0.1=6,即6a+7b=3.2. 又由X1的概率分布列得0.4+a+b+0.1=1,即a+b=0.5. 由解得 (2)由已知得,样本的频率分布表如下: X2 3 4 5 6 7 8  f 0.3 0.2 0.2 0.1 0.1 0.1  用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X2的概率分布列如下: X2 3 4 5 6 7 8  P 0.3 0.2 0.2 0.1 0.1 0.1  所以 E(X2)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8. 即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性.理由如下: 因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为=1. 因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为=1.2. 据此,乙厂的产品更具可购买性.  解决此类题目的关键是将实际问题转化为数学问题,正确理解随机变量取每一个值所表示的具体事件,求得该事件发生的概率,本题第(1)问中充分利用了分布列的性质p1+p2+…+pn+…=1. 【训练3】 某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能 不赔不赚,这三种情况发生的概率分别为,,;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1). (1)如果把10万元投资甲项目,用X表示投资收益(收益=回收资金-投资资金),求X的概率分布及E(X); (2)若把10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围. 解 (1)依题意,X的可能取值为1,0,-1, X的分布列为 X 1 0 -1  P     E(X)=-=. (2)设Y表示10万元投资乙项目的收益,则Y的分布列为: Y 2 -2  P α β  E(Y)=2α-2β=4α-2,依题意要求4α-2≥, ∴≤α≤1.  规范解答23——离散型随机变量的均值与方差的计算 【问题研究】 期望和方差是离散型随机变量的两个重要数学特征,是高考概率考查的重要知识点,常与排列组合、导数等知识相结合,对考查生的数学应用能力、数学表达能力、创新能力都进行了考查. 【解决方案】 (1)掌握好期望与方差的性质.(2)记住或理解一些特殊分布的均值与方差,如两点分布、二项分布等.(3)注意运算技巧,随机变量的均值与方差计算比较复杂,在运算时要注意一些运算技巧,如把问题归结为二项分布的期望与方差,运用期望与方差的性质简化运算,运算时注意一些项的合并. 【示例】?(本小题满分12分)甲、乙两架轰炸机对同一地面目标进行轰炸,甲机投弹一次命中目标的概率为,乙机投弹一次命中目标的概率为,两机投弹互不影响,每机各投弹两次,两次投弹之间互不影响. (1)若至少两次投弹命中才能摧毁这个地面目标,求目标被摧毁的概率; (2)记目标被命中的次数为随机变量ξ,求ξ的分布列和数学期望.  对于第(1)问,甲、乙两机的投弹都是独立重复试验概型,根据至少两次命中分类求解,或使用间接法求解,注意运用相互独立事件同时发生的概率乘法公式;对于第(2)问,根据题意,随机变量ξ=0,1,2,3,4,根据独立重复试验概型及事件之间的相互关系,计算其概率即可求出分布列,根据数学期望的计算公式求解数学期望. [解答示范] 设Ak表示甲机命中目标k次,k=0,1,2,Bl表示乙机命中目标l次,l=0,1,2,则Ak,Bl独立.由独立重复试验中事件发生的概率公式有 P(Ak)=Ck2-k,P(Bl)=Cl2-l. 据此算得P(A0)=,P(A1)=,P(A2)=. P(B0)=,P(B1)=,P(B2)=.(2分) (1)所求概率为 1-P(A0B0+A0B1+A1B0)= 1-=1-=.(4分) (2)ξ的所有可能值为0,1,2,3,4,且 P(ξ=0)=P(A0B0)=P(A0)·P(B0)=×=, P(ξ=1)=P(A0B1)+P(A1B0)=×+×=, P(ξ=2)=P(A0B2)+P(A1B1)+P(A2B0)=×+×+×=,(8分) P(ξ=3)=P(A1B2)+P(A2B1)=×+×=, P(ξ=4)=P(A2B2)=×=.(10分) 综上知,ξ的分布列如下: ξ 0 1 2 3 4  P       从而ξ的期望为E(ξ)=0×+1×+2×+3×+4×=.(12分)  概率问题的核心就是互斥事件、相互独立事件的概率计算、随机变量的分布以及均值等问题,并且都是以概率计算为前提的,在复习时要切实把握好概率计算方法.若本题第(2)问是单纯求随机变量ξ的数学期望,则可以直接根据二项分布的数学期望公式和数学期望的性质解答:令ξ1,ξ2分别表示甲、乙两机命中的次数,则ξ1~B,ξ2~B,故有E(ξ1)=2×=,E(ξ2)=2×=1,而知E(ξ)=E(ξ1)+E(ξ2)=. 【试一试】 (2011·北京)(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.  (1)如果X=8,求乙组同学植树棵数的平均数和方差; (2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的分布列和数学期望. (注:方差s2=[(x1-)2+(x2-)2+…+(xn-)2],其中为x1,x2,…,xn的平均数) 解 (1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为:==; 方差为:s2=×[(8-)2+(8-)2+(9-)2+(10-)2]=. (2)当X=9时,由茎叶图可知,甲组同学的植树棵数是:9,9,11,11;乙组同学的植树棵数是9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y的可能取值为17,18,19,20,21.事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,所以该事件有2种可能的结果,因此P(Y=17)==.同理可得P(Y=18)=;P(Y=19)=;P(Y=20)=;P(Y=21)=.所以随机变量Y的分布列为: Y 17 18 19 20 21  P       EY=17×P(Y=17)+18×P(Y=18)+19×P(Y=19)+20×P(Y=20)+21×P(Y=21)=17×+18×+19×+20×+21×=19. [尝试解答] 由函数f(x)是奇函数且f(x)在[0,2]上是增函数可以推知,f(x)在[-2,2]上递增,又f(x-4)=-f(x)?f(x-8)=-f(x-4)=f(x),故函数f(x)以8为周期,f(-25)=f(-1),f(11)=f(3)=-f(3-4)=f(1),f(80)=f(0),故f(-25)<f(80)<f(11).故选D. 答案 D   高考资源网 w。w-w*k&s%5¥u 高考资源网 w。w-w*k&s%5¥u

【点此下载】