试论三角函数中的解题策略 三角函数是高中阶段继指数函数、对数函数之后的又一具体函数。这章知识具有(1)公式多;(2)思想丰富;(3)变化灵活;(4)渗透性强等特点。分析近几年的高考试题,有关三角函数的内容平均每年有25分,约占17%,题型多为填空题、选择题及解答题的中档题,主要考查三角函数的求值、化简、证明以及解决简单的综合问题。因此,在本章的学习和复习过程中,熟练掌握以下解题思想和方法,有助于提高我们灵活处理问题和解决问题的能力。 策略一:数形结合的思想 例1试求函数的最小值。 思路分析:本题难度较大,用一般方法不易求解,且过程十分繁琐,于是考虑能否将 “数”转化为“形”。 解:利用可将函数变形为  则为点M()到点P(1,1)的距离,为点M到Q(-1,0)的距离,而点M()显然为单位圆上的动点,故求的最小值问题即转化为求单位圆上的动点M到两定点P、Q的距离和的最小值,结合图形易知: MP+MQ≥ 评注:应用数形结合思想是处理三角函数有关问题的重要思想方法,利用图形直观的特殊性来解答问题。 策略二:换元的思想 例2.已知。 解:设,于是 ∴ ∴ 评注:在三角函数式中,若同时含有,可利用换元的思想,将三角问题转化为代数问题来解决。 策略三:分类讨论的思想 例3.已知≤〈,,试求的最小值。 解:∵≤<∴ ∴ ∴ 即 ∴ =() 当[)时,是增函数,当 当(]时,是减函数,当 综上,函数 评注:在三角运算中,有关三角函数所在象限符号的选取常需要进行讨论,三角函数与二次函数综合问题以及三角函数最值等问题也要注意讨论。 策略四:化归与转化的思想 例4.化简。 解法一:从“角”入手,复角化单角 原式= = = = == 解法二:从“名”入手,异名化同名 原式= = =() =()= 解法三:从“形”入手,采用配方法 原式= = == 评注:本题从“角”“名”“形”不同的角度,将三角函数式进行转化,使问题得以解决,化归与转化的思想普遍应用于三角函数式的化简、求值和证明中。 策略五:构造模型的思想 例5.化简。 思路分析:因所给三角函数表达式与余弦定理有类似的形式,故可考虑构造外接圆直径2R=1的三角形ABC,其中。 在△ABC中用正弦定理与余弦定理,得:  评注:用构造三角形解这类三角函数式的化简、计算、证明,思路清晰,解答快捷。 策略六:方程的思想 例6.已知(),的两根,求。 思路分析:根据韦达定理,有  已知(),也易知<0,<0,()。 可得 评注:利用方程的思想方法解有关三角函数问题,如果是二次方程的二根,则方程的系数由韦达定理作为桥梁与两角和正切公式有着密切的联系,这是方程与三角函数知识的一个交汇点。如果是二次方程的二根,则方程的系数由韦达定理作为桥梁与有着密切联系,要注意利用这种关系解题。 策略七:对称的思想 例7.如果函数的图象关于直线对称,那么( )。 思路分析:∵ ∴()=()对定义域上的任何值都成立。 令,则有()= ()=()=()+() ∴  评注:利用函数图象关于直线对称的充要条件是 来解题,是近几年高考题中常涉及的内容,要引起重视。 策略八:特殊值法的思想 例8.若是第四象限角,则一定在( ) A.第一象限 B.第一象限 C.第一象限 D.第一象限 思路分析:取特殊值是第三象限角,故选C。 例9.已知是第二象限角,则所在象限是( ) A.第一或二象限 B.第二或三象限 C.第一或三象限 D.第二或四象限 思路分析:取, 故选C。 评注:根据近年来高考趋势,三角函数的题型难度有所下降,多是选择题和填空题,应用特殊值法的思想,解三角函数的选择题将起到事半功倍的效果。 在学习三角函数这一章时,一方面注意不要引入难度过高、计算量过大、技巧性过强的题目,避免增加不必要的学习负担;另一方面要在落实基础知识、基本技能的基础上,加强运用三角工具的意识和运用数学思想方法的意识,着重培养和提高学生分析问题和解决问题的能力。

【点此下载】