§1.4生活中的优化问题举例(2课时) 教学目标: 使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用 提高将实际问题转化为数学问题的能力 教学重点:利用导数解决生活中的一些优化问题. 教学难点:利用导数解决生活中的一些优化问题. 教学过程: 一.创设情景 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题. 二.新课讲授 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面: 1、与几何有关的最值问题; 2、与物理学有关的最值问题; 3、与利润及其成本有关的最值问题; 4、效率最值问题。 解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路:  三.典例分析 例1.海报版面尺寸的设计 学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小? 解:设版心的高为xdm,则版心的宽为dm,此时四周空白面积为 。 求导数,得 。 令,解得舍去)。 于是宽为。 当时,<0;当时,>0. 因此,是函数的极小值,也是最小值点。所以,当版心高为16dm,宽为8dm时,能使四周空白面积最小。 答:当版心高为16dm,宽为8dm时,海报四周空白面积最小。 例2.饮料瓶大小对饮料公司利润的影响 (1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些? (2)是不是饮料瓶越大,饮料公司的利润越大? 【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是 分,其中  是瓶子的半径,单位是厘米。已知每出售1 mL的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm 问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?    (2)瓶子的半径多大时,每瓶的利润最小? 解:由于瓶子的半径为,所以每瓶饮料的利润是  令 解得 (舍去) 当时,;当时,. 当半径时,它表示单调递增,即半径越大,利润越高; 当半径时, 它表示单调递减,即半径越大,利润越低. (1)半径为cm 时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值. (2)半径为cm时,利润最大. 换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现? 有图像知:当时,,即瓶子的半径为3cm时,饮料的利润与饮料瓶的成本恰好相等;当时,利润才为正值. 当时,,为减函数,其实际意义为:瓶子的半径小于2cm时,瓶子的半径越大,利润越小,半径为cm 时,利润最小. 例3.磁盘的最大存储量问题 计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。 为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。 问题:现有一张半径为的磁盘,它的存储区是半径介于与之间的环形区域. 是不是越小,磁盘的存储量越大? 为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)? 解:由题意知:存储量=磁道数×每磁道的比特数。 设存储区的半径介于与R之间,由于磁道之间的宽度必需大于,且最外面的磁道不存储任何信息,故磁道数最多可达。由于每条磁道上的比特数相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达。所以,磁盘总存储量 × (1)它是一个关于的二次函数,从函数解析式上可以判断,不是越小,磁盘的存储量越大. (2)为求的最大值,计算.  令,解得 当时,;当时,. 因此时,磁盘具有最大存储量。此时最大存储量为 例4.圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省? 解:设圆柱的高为h,底半径为R,则表面积 S=2πRh+2πR2 由V=πR2h,得,则 S(R)= 2πR+ 2πR2=+2πR2 令 +4πR=0 解得,R=,从而h====2 即h=2R 因为S(R)只有一个极值,所以它是最小值 答:当罐的高与底直径相等时,所用材料最省 变式:当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省? 提示:S=2+h= V(R)=R= )=0 . 四.课堂练习 1.用总长为14.8m的钢条制作一个长方体容器的框架,如果所制作的容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积.(高为1.2 m,最大容积) 5.课本 练习课本P104 五.回顾总结 1.利用导数解决优化问题的基本思路:  2.解决优化问题的方法:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决.在这个过程中,导数往往是一个有利的工具。 六.布置作业 课本P104 5,6 例4.汽油的使用效率何时最高 我们知道,汽油的消耗量(单位:L)与汽车的速度(单位:km/h)之间有一定的关系,汽油的消耗量是汽车速度的函数.根据你的生活经验,思考下面两个问题: (1)是不是汽车的速度越快,汽车的消耗量越大? (2)“汽油的使用率最高”的含义是什么? 分析:研究汽油的使用效率(单位:L/m)就是研究秋游消耗量与汽车行驶路程的比值.如果用表示每千米平均的汽油消耗量,那么,其中,表示汽油消耗量(单位:L),表示汽油行驶的路程(单位:km).这样,求“每千米路程的汽油消耗量最少”,就是求的最小值的问题. 通过大量的统计数据,并对数据进行分析、研究,人们发现,汽车在行驶过程中,汽油平均消耗率(即每小时的汽油消耗量,单位:L/h)与汽车行驶的平均速度(单位:km/h)之间有如图所示的函数关系. 从图中不能直接解决汽油使用效率最高的问题.因此,我们首先需要将问题转化为汽油平均消耗率(即每小时的汽油消耗量,单位:L/h)与汽车行驶的平均速度(单位:km/h)之间关系的问题,然后利用图像中的数据信息,解决汽油使用效率最高的问题. 解:因为  这样,问题就转化为求的最小值.从图象上看,表示经过原点与曲线上点的直线的斜率.进一步发现,当直线与曲线相切时,其斜率最小.在此切点处速度约为90. 因此,当汽车行驶距离一定时,要使汽油的使用效率最高,即每千米的汽油消耗量最小,此时的车速约为90.从数值上看,每千米的耗油量就是图中切线的斜率,即,约为 L. 例5.在边长为60 cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少? 解法一:设箱底边长为xcm,则箱高cm,得箱子容积  .   令 =0,解得  x=0(舍去),x=40, 并求得V(40)=16 000 由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值 答:当x=40cm时,箱子容积最大,最大容积是16 000cm3 解法二:设箱高为xcm,则箱底长为(60-2x)cm,则得箱子容积 .(后面同解法一,略) 由题意可知,当x过小或过大时箱子容积很小,所以最大值出现在极值点处. 事实上,可导函数、在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值 例6.在经济学中,生产x单位产品的成本称为成本函数同,记为C(x),出售x单位产品的收益称为收益函数,记为R(x),R(x)-C(x)称为利润函数,记为P(x)。 (1)、如果C(x)=,那么生产多少单位产品时,边际最低?(边际成本:生产规模增加一个单位时成本的增加量) (2)、如果C(x)=50x+10000,产品的单价P=100-0.01x,那么怎样定价,可使利润最大? 变式:已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为.求产量q为何值时,利润L最大? 分析:利润L等于收入R减去成本C,而收入R等于产量乘价格.由此可得出利润L与产量q的函数关系式,再用导数求最大利润. 解:收入, 利润  令,即,求得唯一的极值点 答:产量为84时,利润L最大 例7.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b. 解:由梯形面积公式,得S= (AD+BC)h,其中AD=2DE+BC,DE=h,BC=b ∴AD=h+b, ∴S= ① ∵CD=,AB=CD.∴l=×2+b ② 由①得b=h,代入②,∴l= l′==0,∴h=, 当h<时,l′<0,h>时,l′>0. ∴h=时,l取最小值,此时b= 例8.已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y =4-x2在x轴上方的曲线上,求这种矩形中面积最大者的边长. 【解】设位于抛物线上的矩形的一个顶点为(x,y),且x >0,y >0, 则另一个在抛物线上的顶点为(-x,y), 在x轴上的两个顶点为(-x,0)、(x,0),其中0< x <2. 设矩形的面积为S,则S =2 x(4-x2),0< x <2. 由S′(x)=8-6 x2=0,得x =,易知 x =是S在(0,2)上的极值点, 即是最大值点, 所以这种矩形中面积最大者的边长为和. 【点评】 应用题求解,要正确写出目标函数并明确题意所给的变量制约条件.应用题的分析中如确定有最小值,且极小值唯一,即可确定极小值就是最小值. 练习:1:一书店预计一年内要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库费40元,并假设该书均匀投放市场,问此书店分几次进货、每次进多少册,可使所付的手续费与库存费之和最少? 【解】假设每次进书x千册,手续费与库存费之和为y元, 由于该书均匀投放市场,则平均库存量为批量之半,即,故有 y =×30+×40,y′=-+20, 令y′=0,得x =15,且y″=,f″(15)>0, 所以当x =15时,y取得极小值,且极小值唯一, 故 当x =15时,y取得最小值,此时进货次数为=10(次). 即该书店分10次进货,每次进15000册书,所付手续费与库存费之和最少. 2:有甲、乙两城,甲城位于一直线形河岸,乙城离岸40千米,乙城到岸的垂足与甲城相距50千米,两城在此河边合设一水厂取水,从水厂到甲城和乙城的水管费用分别为每千米500元和700元,问水厂应设在河边的何处,才能使水管费用最省? 【解】设水厂D点与乙城到岸的垂足B点之间的距离为x千米,总费用为y元, 则CD =. y =500(50-x)+700 =25000-500 x +700, y′=-500+700 · (x 2+1600)· 2 x =-500+, 令y′=0,解得x =. 答:水厂距甲距离为50-千米时,总费用最省. 【点评】 当要求的最大(小)值的变量y与几个变量相关时,我们总是先设几个变量中的一个为x,然后再根据条件x来表示其他变量,并写出y的函数表达式f(x).

【点此下载】