抛 物 线 习 题 课 教学目标:熟练掌握抛物线的性质及其求法。 重点:抛物线的求法 难点:抛物线的证明 教学过程: 1 复习回顾 简单回顾抛物线的四种方程及其性质 练习: ⑴选择题: 1,以F(0,1)为焦点,以L:y ( ( 1为准线的拋物线的方程式为何? (A) y2 ( 4x (B) y2 ( ( 4x (C) x2 ( 4y (D) x2 ( ( 4y (E) y ( x2 答案:C 2.下列何者为拋物线y ( ax2 ( bx ( c的顶点在第四象限的充分条件? (A) a ( 0,b ( 0,c ( 0 (B) a ( 0,b ( 0,c ( 0  (C) a ( 0,b ( 0,c ( 0 (D) a ( 0,b ( 0,b2 ( 4ac ( 0  答案:C 3.设y ( y ( ax2 ( bx ( c的图形如右,下列何者正确?  a ( 0 (B) b ( 0 (C) c ( 0  (D) a ( b ( c ( 0 (E) b2 ( 4ac ( 0 答案:B,D,E ⑵填空题: 1.与直线2x ( 3y ( 2 ( 0及点(1,( 1)等距离的点的轨迹方程式为 9x2 ( 12xy ( 4y2 ( 34x ( 14y ( 22 ( 0 2.与y2 ( 4x ( 6y ( 5 ( 0共轴、共焦点且过(3,1)之拋物线方程为 (y ( 3)2 ( ( 16(x ( 4)或(y ( 3)2 ( 4(x ( 1) 3.拋物线C1:y2 ( 4x,椭圆C2:bx2 ( 9y2 ( 9b有共同之焦点F1,P为C1,C2位于x轴上方之交点,F2为C2之另一焦点, 且(PF2F1 ( (,(PF1F2 ( (,求cos(.cos( ( ⑶证明题 1.设线段PQ为拋物线C 的焦点弦(过焦点的弦),L为C的准线,F为焦点,如图所示,过P,Q分别作L的垂线,令垂足依序为A,B,且M为AB的中点,试证: (1)MP⊥MQ (2)MF⊥PQ 证明:(1) F为拋物线C 的焦点,且弦PQ过焦点F,L为准线,M为AB中点, PA⊥L,QB⊥L,所以PA(PF,QB(QF,因此AP(BQ(PF(QF(PQ。过M作MN//AP,交PQ于N,则 MN(1/2 (AP(BQ)(PQ,又N为PQ中点, 所以MN(1/2 PQ(PN(QN, 因此∠MPN (∠PMN,∠QMN (∠MQN 所以∠PMQ (∠PMN (∠QMN ( 90(,即MP⊥MQ (2)如图,∠1 (∠2,∠3 (∠4,又 ∠1 (∠2 (∠APF (∠3 (∠4 (∠BQF ( 360( 又∠APF (∠BQF ( 180(,所以, ∠1 (∠2 (∠3 (∠4 ( 2(∠2 (∠4) ( 180( 因此,∠2 (∠4 ( 90(,可得∠AFB ( 90(,M为直角三角形AFB的斜边中点 所以AM(BM(MF,又AP(FP,MP(MP,所以 △AMP △FMP 因此∠PFM (∠PAM ( 90(,即PF⊥MF,亦即MF⊥PQ ⑷解答题: 1.两拋物线y ( x2 ( 3x ( 2,y ( 2x2 ( 5x ( a相交于两相异点P,Q, (1)求a的范围 (2)求PQ的方程式  (3)若PQ( 4,则a (? (1) 2x2 ( 5x ( a ( x2 ( 3x ( 2有两解 (x2 ( 2x ( (a ( 2) ( 0有相异两实根 (判别式 ( ( ( 2)2 ( 4(a ( 2) ( 0 (a ( 3   3.设动圆C与圆x2 ( y2 ( 8x ( 12 ( 0及直线x ( 2 ( 0相切,则动圆C之圆心轨迹方程式为何? 解:x2(y2(8x(12(0 ((x(4)2(y2( 4,圆心A(4,0),半径2, 令动圆C之圆心P(x,y)

【点此下载】