十、导数: 一、导数的概念: (1)函数在点处可导:函数在到之间的平均变化率,即; 如果当时,有极限,则称函数在点处可导。 (2)函数在开区间内可导:如果函数在开区间内每一点处都可导,则称函数在开区间内可导; (3)函数在点的导数: 如果函数在点处可导,那么极限叫做函数在点的导数(或变化率),记作:或;即 (4)函数在开区间内的导函数(导数): 如果函数在开区间内可导,那么对于开区间的每一个确定的值都对应着一个确定的导数,这样在开区间内构成一个新的函数,我们把这—新函数叫做函数在开区间内的导函数(简称导数),记或;即: (5)导数的几何意义:函数在点处的导数,就是曲线在点处的切线的斜率,即; (6)导数在物理中的运用:函数在点处的导数,就是当物体的运动方程为时,物体运动在时刻的瞬时速度,即;物体运动在时刻的加速度; 二、几种常见函数的导数:(为常数); 三、函数的和、差、积、商的导数: (1)和(差)的导数:两个函数的和(差)的导数,等于这两个函数的导数的和(差),即 容易推广到有限个函数的情形: (2)积的导数:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即: 容易推出:(为常数):常数与函数的积的导数等于这个常数乘以函数的导数; 四、导数的运用: (1)函数的单调性: ①设函数在某个区间内可导,如果,则为增函数;如果,则为减函数。 ②设函数在某个区间内可导,如果在该区间上单调递增(或递减),则在该区间内(或)。 求可导函数单调区间的步骤: ①求; ②解不等式(或);③确认并指出递增区间(或递减区间); 证明可导函数在内的单调性的步骤: ①求; ②确认在内的符号; ③作出结论; (2)函数的极大值与极小值: 函数极值的定义:设函数在点附近有定义,如果对附近的所有的点,都有(或),就说是函数的一个极大(小)值; 求可导函数的极值的步骤: ①求; ②求方程的全部实根; ③检查在方程的根左右的值的符号,如果左正右负,那么在这个根处取得极大值;如果左负右正,那么在这个根处取得极小值。 (3)函数的最大值与最小值: 求在上的最大值和最小值的步骤: ①求在内的极值; ②将的各极值与,比较,确定的最大值与最小值;

【点此下载】