第三十九教时 教材:复习二倍角的正弦、余弦、正切 目的:通过梳理,突出知识间的内在联系,培养学生综合运用知识,分析问题、解决问题的能力。 过程: 复习:1.倍角公式 2.延伸至半角、万能、积化和差、和差化积公式 例题: 化简: 解:原式 = 2|sin4 + cos4| +2|cos4| ∵ ∴sin4 + cos4 < 0 cos4 < 0 ∴原式= (2(sin4 + cos4) (2cos4 = (2sin4 ( 4cos4 已知,求sin4(的值 解:∵ ∴ ∴ ∴cos2( = 又∵ ∴2(( ((, 2() ∴sin2( =  ∴sin4( = 2sin2(cos2( =  已知3sin2( + 2sin2( = 1,3sin2( ( 2sin2( = 0,且(、(都是锐角, 求(+2(的值 解:由3sin2( + 2sin2( = 1 得1 ( 2sin2( = 3sin2( ∴cos2( = 3sin2( 由3sin2( ( 2sin2( = 0 得sin2( =sin2( = 3sin(cos( ∴cos((+2() = cos(cos2( (sin(sin2( = cos(3sin2( ( sin(3sin(cos( = 0 ∵0(<(<90(, 0(<(<90( ∴0(< (+2( <270( ∴(+2( = 90( 已知sin(是sin(与cos(的等差中项,sin(是sin(、cos(的等比中项,  求证: 证:由题意: 2sin( = sin( + cos( ① sin(2 = sin(cos( ② 2(2②:4sin2( ( 2sin2( = 1 ∴1 ( 2sin2( = 2 ( 4sin2( ∴cos2( = 2cos2( 由②:1 ( 2sin(2 = 1 ( 2sin(cos( ∴cos2( = (sin( ( cos()2 =  ∴ 原命题成立 5.(《教学与测试》P129备用题)奇函数f (x)在其定义域上是减函数, 并且f (1(sin() + f (1(sin2() < 0,求角(的取值范围。 解:∵f (1(sin() < f (sin2( (1) ∴ 1(sin( < sin2( (1  (<1(sin(< (1),求证: 证:∵sin( = sin[((+()((] = sin((+()cos((cos((+()sin( = asin((+() ∴sin((+()(cos( ( a) = cos((+()sin( ∴ 作业:《导学 创新》印成讲义 课外作业 P88 复习参考题 19—22

【点此下载】