第三十九教时
教材:复习二倍角的正弦、余弦、正切
目的:通过梳理,突出知识间的内在联系,培养学生综合运用知识,分析问题、解决问题的能力。
过程:
复习:1.倍角公式
2.延伸至半角、万能、积化和差、和差化积公式
例题:
化简:
解:原式
= 2|sin4 + cos4| +2|cos4|
∵ ∴sin4 + cos4 < 0 cos4 < 0
∴原式= (2(sin4 + cos4) (2cos4 = (2sin4 ( 4cos4
已知,求sin4(的值
解:∵ ∴
∴ ∴cos2( =
又∵ ∴2(( ((, 2()
∴sin2( =
∴sin4( = 2sin2(cos2( =
已知3sin2( + 2sin2( = 1,3sin2( ( 2sin2( = 0,且(、(都是锐角,
求(+2(的值
解:由3sin2( + 2sin2( = 1 得1 ( 2sin2( = 3sin2( ∴cos2( = 3sin2(
由3sin2( ( 2sin2( = 0 得sin2( =sin2( = 3sin(cos(
∴cos((+2() = cos(cos2( (sin(sin2( = cos(3sin2( ( sin(3sin(cos( = 0
∵0(<(<90(, 0(<(<90( ∴0(< (+2( <270( ∴(+2( = 90(
已知sin(是sin(与cos(的等差中项,sin(是sin(、cos(的等比中项,
求证:
证:由题意: 2sin( = sin( + cos( ①
sin(2 = sin(cos( ②
2(2②:4sin2( ( 2sin2( = 1
∴1 ( 2sin2( = 2 ( 4sin2( ∴cos2( = 2cos2(
由②:1 ( 2sin(2 = 1 ( 2sin(cos(
∴cos2( = (sin( ( cos()2 =
∴ 原命题成立
5.(《教学与测试》P129备用题)奇函数f (x)在其定义域上是减函数, 并且f (1(sin() + f (1(sin2() < 0,求角(的取值范围。
解:∵f (1(sin() < f (sin2( (1) ∴ 1(sin( < sin2( (1
(<1(sin(<
(1),求证:
证:∵sin( = sin[((+()((] = sin((+()cos((cos((+()sin( = asin((+()
∴sin((+()(cos( ( a) = cos((+()sin(
∴
作业:《导学 创新》印成讲义
课外作业 P88 复习参考题 19—22
【点此下载】