幻灯片 1第一节 数列(含函数特性)
----
幻灯片 2三年2考 高考指数:★
1.了解数列的概念和几种简单的表示方法(列表、图像、通项公式);
2.了解数列是自变量为正整数的一类函数.
----
幻灯片 31.根据数列的递推关系求通项公式和已知前n项和Sn求an是高考考查的重点.
2.多在解答题中出现,属中档题目.
----
幻灯片 41.数列的定义、分类与通项公式
(1)数列的定义
①数列:按照_________排列的一列数.
②数列的项:数列中的_________.
一定次序
每一个数
----
幻灯片 5(2)数列的分类
有限
无限
>
<
----
幻灯片 6(3)数列的通项公式
如果数列{an}的第n项an与__之间的函数关系可以用一个式子表
示成an=f(n),那么这个式子叫作这个数列的通项公式.
n
----
幻灯片 7【即时应用】
(1)思考:数列的通项公式是唯一的吗?
提示:不惟一,如数列-1,1,-1,1,…的通项公式可以是
an=(-1)n(n∈N+),也可以是
----
幻灯片 8(2)判断下列说法是否正确.(请在括号中填写“√”或“×”)
①数列1,3,5,7可表示为{1,3,5,7}. ( )
②数列1,0,-1,-2与数列-2,-1,0,1是相同的数列.
( )
③数列{ }的第k项为1+ ( )
④数列0,2,4,6,…可记为{2n}. ( )
----
幻灯片 9【解析】由数列的定义可知①、②错误;数列{ }的第k项
为 故③正确;数列0,2,4,6,…的通项公式为an=
2n-2,故④错.综上知,③正确;①,②,④错误.
答案:①× ②× ③√ ④×
----
幻灯片 10(3)若数列{an}的通项公式为 那么这个数列是____数
列.(填“递增”、“递减”、“摆动”)
【解析】令f(x)= 则f(x)= 在(0,+∞)上是增函
数,则数列{an}是递增数列.
答案:递增
----
幻灯片 11(4)数列9,99,999,…的通项公式an=_____.
【解析】9=10-1,99=102-1,999=103-1,…,
∴an=10n-1.
答案:10n-1
----
幻灯片 122.an与Sn的关系
若数列{an}的前n项和为Sn,
则
----
幻灯片 13【即时应用】
(1)数列{an}的前n项和Sn=n2+1,则an=________.
(2)数列{an}的前n项和为Sn,且a1=1,Sn=nan,则an=______.
----
幻灯片 14【解析】(1)当n=1时,a1=S1=2;
当n≥2时,an=Sn-Sn-1=(n2+1)-[(n-1)2+1]
=n2-(n-1)2=2n-1,
将n=1代入an=2n-1得a1=1≠2.
(2)当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1,
∴an=an-1(n≥2),∴an=1.
答案:
----
幻灯片 15 已知数列的前几项,归纳数列的通项公式
【方法点睛】求数列的通项时,要抓住以下几个特征
(1)分式中分子、分母的特征;
(2)相邻项的变化特征;
(3)拆项后的特征;
(4)各项符号特征等,并对此进行归纳、联想.
----
幻灯片 16【例1】根据数列的前几项,写出下列各数列的一个通项公式.
(1)-1,7,-13,19,…
(2)0.8,0.88,0.888,…
----
幻灯片 17【解题指南】(1)从各项符号和各项绝对值的关系两方面考虑.
(2)从考虑数列0.8,0.88,0.888,…和数列0.9,0.99,0.999,…的关系着手.
(3)分子规律不明显,从考虑分子与分母的关系着手.
----
幻灯片 18【规范解答】(1)符号可通过(-1)n表示,后面的数的绝对值总
比前面的数的绝对值大6,故通项公式为an=(-1)n(6n-5).
(2)数列变为 (1-0.1), (1-0.01), (1-0.001),…,
∴an= (1- ).
(3)各项的分母分别为21,22,23,24,…,易看出第2,3,4
项的分子分别比分母少3.因此把第1项变为
原数列化为
----
幻灯片 19【反思·感悟】1.解答本题(3)时有两个困惑:一是首项的符号,二是各项分子规律不明显.解答时从分子与分母的关系入手,是求解的关键.
2.归纳通项公式应从以下四个方面着手:
(1)观察项与项之间的关系;
(2)符号与绝对值分别考虑;
(3)分开看分子、分母,再综合看分子、分母的关系;
(4)规律不明显时适当变形.
----
幻灯片 20【变式训练】根据数列的前几项,写出各数列的一个通项公式.
(1)3,5,7,9,….
----
幻灯片 21【解析】(1)各项减去1后为正偶数,∴an=2n+1.
(2)每一项的分子比分母少1,而分母组成数列21,22,23,
24,…,∴
(3)各项负正相间,故通项公式中含有因式(-1)n,各项绝对值
的分母组成数列{n},分子组成的数列中,奇数项为1,偶数项
为3,即奇数项为2-1,偶数项为2+1.
----
幻灯片 22【变式备选】根据数列的前4项,写出数列的一个通项公式.
(1)2,5,8,11;
(2)1,4,9,16.
【解析】(1)∵a1=3×1-1=2,
a2=3×2-1=5,a3=3×3-1=8,
a4=3×4-1=11,∴an=3n-1.
(2)∵a1=12,a2=22=4,a3=32=9,
a4=42=16,∴an=n2.
----
幻灯片 23 已知Sn求an
【方法点睛】已知Sn求an时应注意的问题
(1)应重视分类讨论思想的应用,分n=1和n≥2两种情况讨论,
特别注意an=Sn-Sn-1中需n≥2.
(2)由Sn-Sn-1=an推得an,当n=1时,a1也适合“an式”,则需统
一“合写”.
(3)由Sn-Sn-1=an推得an,当n=1时,a1不适合“an式”,则数列
的通项公式应分段表示(“分写”),即
----
幻灯片 24【例2】已知数列{an}的前n项和Sn,分别求它们的通项公式.
(1)Sn=2n2+3n;(2)Sn=3n+1.
【解题指南】解决本题的关键是明确通项公式与前n项和Sn的
关系,利用
----
幻灯片 25【规范解答】(1)由题可知,
当n=1时,a1=S1=2×12+3×1=5,
当n≥2时,an=Sn-Sn-1=(2n2+3n)-[2(n-1)2+3(n-1)]=4n+1.
当n=1时,4×1+1=5=a1,∴an=4n+1.
----
幻灯片 26(2)当n=1时,a1=S1=3+1=4,
当n≥2时,
an=Sn-Sn-1=(3n+1)-(3n-1+1)=2×3n-1.
当n=1时,2×31-1=2≠a1,
----
幻灯片 27【反思·感悟】解答此类题目易犯的错误是没有分n=1和n≥2两种情况求解,而是直接根据an=Sn-Sn-1求得an.
----
幻灯片 28【变式训练】已知数列{an}前n项和为Sn,求下列条件下数列的通项公式.
(1)Sn=2×5n-2;
(2)Sn=2×3n-1-1.
----
幻灯片 29【解析】(1)当n=1时,
a1=S1=2×5-2=8.
当n≥2时,an=Sn-Sn-1=2×5n-2-2×5n-1+2
=8×5n-1.
∴当n=1时,8×51-1=8=a1,故an=8×5n-1.
----
幻灯片 30(2)当n=1时,a1=S1=1,
当n≥2时,an=Sn-Sn-1=2×3n-1-1-(2×3n-2-1)=2×3n-1-2×3n-2
=2×3n-2×(3-1)=4×3n-2.
当n=1时,4×31-2= ≠a1,故数列{an}的通项公式为:
----
幻灯片 31 由递推公式求数列的通项公式
【方法点睛】1.“累加法”求an
已知a1且an-an-1=f(n)(n≥2),可以用“累加法”,即an-an-1
=f(n),an-1-an-2=f(n-1),…,a3-a2=f(3),a2-a1=f(2),所有等式
左右两边分别相加,代入a1得an.
----
幻灯片 322.“累乘法”求an
已知a1且 =f(n)(n≥2),可以用“累乘法”,
即
所有等式左右两边分别相乘,代入a1得an.
【提醒】在求解出通项公式后,记得验证a1是否满足公式.
----
幻灯片 33【例3】根据下列条件,确定数列{an}的通项公式.
(1)a1=2,an+1=an+ln(1+ );
(2)a1=1,nan+1=(n+1)an.
【解题指南】(1)求an-an-1,累加求和并验证n=1的情形.
(2)求 累乘求积并验证n=1的情形.
----
幻灯片 34【规范解答】(1)∵an+1=an+ln(1+ ),
∴an-an-1=ln(1+ )= (n≥2),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
又a1=2适合上式,故an=2+lnn(n∈N+).
----
幻灯片 35(2)∵a1=1,nan+1=(n+1)an,
又a1=1适合上式,故an=n(n∈N+).
----
幻灯片 36【互动探究】将本例(1)中“ ”改为
“ ”,如何求解?
----
幻灯片 37【解析】
当n=1时,a1=2也适合上式,故an=3- (n∈N+).
----
幻灯片 38【反思·感悟】解答此类题目应注意两个方面的问题:一是何时应用“累加”或“累乘”法,可从所给递推公式的结构上分析.二是如何“累加”或“累乘”,这是求通项公式an的关键,应注意对“累加”式或“累乘”式的变形.
----
幻灯片 39【变式备选】求出满足条件a1=0,an+1=an+(2n-1)(n∈N+)的数列的通项公式.
【解析】由题意得,an-an-1=2n-3(n≥2),∴an=a1+(a2-a1)+…
+(an-an-1)=0+1+3+…+(2n-5)+(2n-3)=(n-1)2,又a1=0适合上式,所以数列的通项公式为an=(n-1)2.
----
幻灯片 40【易错误区】忽视数列的项数n的范围致误
【典例】(2012·大连模拟)已知数列{an}满足a1=33,an+1-an=2n,
则 的最小值为_______.
【解题指南】先用“累加法”求出an,再根据 的单调性求最
小值.
----
幻灯片 41【规范解答】∵an+1-an=2n,∴an-an-1=2(n-1),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(2n-2)+(2n-4)+…+2+33=n2-n+33(n≥2),
又a1=33适合上式,∴an=n2-n+33,
令f(x)=x+ -1(x>0),则f′(x)=1-
令f′(x)=0得x=
∴当0 时,f′(x)>0,
即f(x)在区间(0, )上递减,在区间( +∞)上递增.
∴当n=6时, 有最小值
答案:
----
幻灯片 43【阅卷人点拨】通过阅卷数据分析与总结,我们可以得到以下误区警示和备考建议:
----
幻灯片 44----
幻灯片 451.(2012·珠海模拟)设数列{an}的前n项和Sn=n2+n,则a7的值为
( )
(A)13 (B)14 (C)15 (D)16
【解析】选B.a7=S7-S6=(72+7)-(62+6)=14.
----
幻灯片 462.(2012·中山模拟)数列 的第10项是( )
【解析】选C.由已知得数列的通项公式
----
幻灯片 473.(2012·杭州模拟)已知数列{an},若a1=b(b>0),
an+1 则能使an=b成立的n的值可能是( )
(A)14 (B)15 (C)16 (D)17
【解析】选C.∵
故数列{an}是以3为周期的数列.
∴a16=a1=b.
----
幻灯片 484.(2012·合肥模拟)数列{an}中,a1=1,an+1= (n∈N+),
则a5=( )
【解析】选B.
----
幻灯片 495.(2011·江西高考)已知数列{an}的前n项和Sn满足:
Sn+Sm=Sn+m,且a1=1,那么a10=( )
(A)1 (B)9 (C)10 (D)55
【解析】选A.∵Sn+Sm=Sn+m,
∴令n=9,m=1,得S9+S1=S10,即S1=S10-S9=a10=1,∴a10=1.
----
幻灯片 50----
幻灯片 51----
【点此下载】