幻灯片  1第三节  圆的方程
----
幻灯片  2三年6考  高考指数:★★
1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程;
2.初步了解用代数方法处理几何问题.
----
幻灯片  31.圆的方程的求法、圆的几何性质是高考的重点;
2.常和圆的几何性质结合,重点考查待定系数法、方程的曲线与曲线的方程的概念;
3.题型多以选择题和填空题为主,有时与其他知识点交汇.
----
幻灯片  41.圆的定义、方程
(1)在平面内到______的距离等于______的点的轨迹叫做圆;
(2)确定一个圆的基本要素是: _______和_______.
(3)圆的标准方程
①两个条件:圆心(a,b),________;
②标准方程:(x-a)2+(y-b)2=r2.
定点
定长
圆心
半径
半径r
----
幻灯片  5(4)圆的一般方程
①一般方程:x2+y2+Dx+Ey+F=0;
②方程表示圆的充要条件为:______________;
③圆心坐标_________,半径r=_______________.
D2+E2-4F>0
----
幻灯片  6【即时应用】
(1)方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是__________;
(2)圆x2-2x+y2-3=0的圆心到直线x+   y-3=0的距离为_______;
(3)当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为
圆心,   为半径的圆的方程为_______________________.
----
幻灯片  7【解析】(1)x2+y2+ax+2ay+2a2+a-1=0表示圆,所以a2+(2a)2-4(2a2+a-1)>0,解得-2<a<
(2)x2-2x+y2-3=0的圆心坐标为(1,0),它到直线x+   y-3=0的
距离为
(3)直线方程变为(x+1)a-x-y+1=0,
由            得       ∴C(-1,2).
----
幻灯片  8∴所求圆的方程为(x+1)2+(y-2)2=5.
即:x2+y2+2x-4y=0.
答案:(1)-2<a<     (2)1    (3)x2+y2+2x-4y=0
----
幻灯片  92.点与圆的位置关系
(1)理论依据:____与_______的距离与半径的大小关系
(2)三个结论:
圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)
①__________________ ⇔点在圆上;
②__________________ ⇔点在圆外;
③__________________ ⇔点在圆内.
点
圆心
(x0-a)2+(y0-b)2=r2
(x0-a)2+(y0-b)2<r2
(x0-a)2+(y0-b)2>r2
----
幻灯片  10【即时应用】
(1)思考:①若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0上,则x02+y02+Dx0+Ey0+F满足什么条件?
②若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0内,则x02+y02+Dx0+Ey0+F
满足什么条件?
③若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x02+y02+Dx0+Ey0+F
满足什么条件?
----
幻灯片  11提示:①x02+y02+Dx0+Ey0+F=0;
②x02+y02+Dx0+Ey0+F<0;
③x02+y02+Dx0+Ey0+F>0.
----
幻灯片  12(2)已知点A(0,0)在圆:x2+y2+2ax+a2+a-2=0外,则a的取值范围是____________;
【解析】因为方程x2+y2+2ax+a2+a-2=0表示圆,所以(2a)2-4(a2+a-2)>0,解得:a<2,
又因为点A(0,0)在圆外,所以a2+a-2>0,解得:a<-2或a>1,综上可得1<a<2或a<-2.
答案:1<a<2或a<-2
----
幻灯片  13(3)已知点A(1,2)在圆:x2+y2+ax-2y+b=0上,且点A关于直线
x-y=0的对称点B也在圆上,则a=______,b=______.
【解析】方法一:点A(1,2)关于直线x-y=0的对称点为B(2,1),又因为A、B两点都在圆上,
所以                   解得
----
幻灯片  14方法二:易知圆心在y=x上,∴1= 
即a=-2,又∵点A(1,2)在圆x2+y2-2x-2y+b=0上,
∴12+22-2×1-2×2+b=0,∴b=1.
答案:-2    1
----
幻灯片  15                   求圆的方程
【方法点睛】1.求圆的方程的方法
(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.
(2)待定系数法:
①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,依据已知条件列出关于a、b、r的方程组,从而求出a、b、r的值;
----
幻灯片  16②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值.
2.确定圆心位置的方法
(1)圆心在过切点且与切线垂直的直线上;
(2)圆心在任意一弦的垂直平分线上;
(3)两圆相切时,切点与两圆圆心共线.
----
幻灯片  17【例1】(1)过点A(6,5)、B(0,1),并且圆心在直线3x+10y+9=0上的圆的方程为______________;
(2)求经过点A(-2,-4),且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.
【解题指南】(1)因为圆心在弦的垂直平分线上,所以解方程组,求出圆心,再求出半径,即得圆的方程;
----
幻灯片  18(2)可先设圆心坐标为C(a,b),由圆心与切点连线与切线垂直及圆心到圆上点的距离相等得出关于a、b的两个方程,解方程组即可得到圆心坐标,再求出半径,得出圆的方程;也可直接求出圆心坐标,再求出半径,得出圆的方程.
----
幻灯片  19【规范解答】(1)因为圆经过A、B两点,所以,圆心在AB的垂直平分线上,而AB的垂直平分线方程为:3x+2y-15=0,解方程
组             得:
所以圆心坐标为:C(7,-3),又|BC|=
所以,所求圆的方程为:(x-7)2+(y+3)2=65.
答案:(x-7)2+(y+3)2=65
----
幻灯片  20(2)方法一:设圆心坐标为C(a,b),依题意得:
解得:
半径r=
因此,所求圆的方程为:
----
幻灯片  21方法二:依题意得,圆心在AB的垂直平分线上,而AB的垂直平分线方程为:x+y-4=0;又因为圆心也在过B且与直线l垂直的直线上,而此直线方程为:3x-y-18=0,解方程组
             得:
以下同方法一.
----
幻灯片  22【互动探究】本例(2)中“经过点A(-2,-4)”改为“圆心在直
线x+y-4=0上”,结果如何?
【解析】方法一:设所求圆的方程为(x-a)2+(y-b)2=r2,依题设
有                   解得
因此,所求圆的方程为:
----
幻灯片  23方法二:依题设可知,圆心也在过切点B(8,6)且与l垂直的直线上,其斜率为3,所以方程为y-6=3(x-8)
即3x-y-18=0,又圆心在x+y-4=0上,由
             得圆心
半径
因此,所求圆的方程为:
----
幻灯片  24【反思·感悟】1.从题组求解可以看出,确定一个圆的方程,需要三个独立的条件;“选形式,定参数”是求圆的方程的基本方法,即根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.
2.解答与圆有关的问题,应注意数形结合,充分运用圆的几何性质,简化运算.
----
幻灯片  25【变式备选】已知圆心为点(2,-3),一条直径的两个端点恰好落在两个坐标轴上,则这个圆的方程是__________________.
【解析】因为圆心为点(2,-3),一条直径的两个端点恰好落在两个坐标轴上,所以,直径的两个端点坐标为(4,0)、(0,-6),
所以,圆的半径为                       圆的方程为:
(x-2)2+(y+3)2=13.
答案:(x-2)2+(y+3)2=13
----
幻灯片  26                   与圆有关的最值问题
【方法点睛】与圆有关的最值问题,常见的有以下类型
(1)形如       型的最值问题,可转化为过点(a,b)和点(x,y)
的直线的斜率的最值问题;
(2)形如t=ax+by型的最值问题,可转化为动直线的截距的最值
问题;
(3)形如(x-a)2+(y-b)2型的最值问题,可转化为动点到定点的距离平方的最值问题.
----
幻灯片  27【例2】已知实数x、y满足方程x2+y2-4x+1=0.
(1)求   的最大值和最小值;
(2)求y-x的最大值和最小值;
(3)求x2+y2的最大值和最小值.
----
幻灯片  28【解题指南】充分利用所求代数式的几何意义,运用几何法求
解.  为点(x,y)与原点连线的斜率;而y-x表示动直线y=x+b的
纵截距;x2+y2表示点(x,y)与原点的距离的平方;也可以消去
一个元,转化为在函数定义域内求最值.
----
幻灯片  29【规范解答】(1)原方程可化为(x-2)2+y2=3,表示以(2,0)为圆
心,  为半径的圆,  的几何意义为点(x,y)与原点连线的斜
率,所以设  =k,即y=kx,当直线与圆相切时,斜率k取最大值
或最小值,此时           解得k=±   所以  的最大值为
    最小值为
----
幻灯片  30(2)y-x可看作直线y=x+b在y轴上的截距,当直线与圆相切时,
直线y=x+b在y轴上的截距取最大值或最小值,此时
            解得b=-2±   所以y-x的最大值为-2+    最小值
为-2-
(3)方法一:x2+y2表示点(x,y)与原点的距离的平方,由平面几
何知识可知,原点与圆心的连线所在直线与圆的两个交点处取
得最大值或最小值.又圆心到原点的距离为2,
----
幻灯片  31故(x2+y2)max= 
(x2+y2)min=
方法二:由x2+y2-4x+1=0得:y2=-x2+4x-1,且-x2+4x-1≥0,
即:
∴x2+y2=x2+(-x2+4x-1)=4x-1,
∴(x2+y2)max= 
(x2+y2)min=
----
幻灯片  32【反思·感悟】1.本题三问都是求代数式的最值,它们都是利用代数式的几何意义与取最值时所满足的条件得出等式,通过解方程即可得出结论.
2.解答圆的最值问题,应注意数形结合,充分运用直线的斜率、在坐标轴上的截距、几何性质,来寻找解题思路.
----
幻灯片  33【变式训练】已知点P(x,y)在圆x2+(y-1)2=1上运动,则
的最大值为________;最小值为______.
【解析】     的几何意义表示圆上的动点与(2,1)连线的斜率,
所以设     =k,即kx-y+1-2k=0,当直线与圆相切时,斜率k
取最大值或最小值,此时             解得k=±    所以
     的最大值为    最小值为-
答案:
----
幻灯片  34【变式备选】若点P(x,y)是圆(x+1)2+y2=1上任意一点,求
(x-2)2+(y+4)2的最大值、最小值.
【解析】方法一:(x-2)2+(y+4)2表示圆上的点到定点(2,-4)
的距离的平方,因为圆心(-1,0)到点(2,-4)的距离为
                   所以,圆上的点到点(2,-4)的距离的
最大值为6、最小值为4;因此,(x-2)2+(y+4)2的最大值为36、最小值为16.
----
幻灯片  35方法二:因为点P(x,y)是圆(x+1)2+y2=1上任意一点,所以可设
             则(x-2)2+(y+4)2
=(cosθ-3)2+(sinθ+4)2=26+8sinθ-6cosθ
=26+10sin(θ+β)(其中tanβ=   ).
故(x-2)2+(y+4)2的最大值为36;
(x-2)2+(y+4)2的最小值为16.
----
幻灯片  36                   与圆有关的轨迹问题
【方法点睛】1.求轨迹方程的基本步骤
第一步:建立适当的平面直角坐标系,设曲线上任意点的坐标为M(x,y);
第二步:写出适合已知条件的点M的集合P={M|P(M)};
第三步:用坐标表示P(M),列出方程f(x,y)=0;
第四步:化简方程f(x,y)=0为最简形式.
----
幻灯片  372.求与圆有关的轨迹方程的方法
【提醒】注意轨迹与轨迹方程的区别.
----
幻灯片  38【例3】长为2a的线段AB的两端点A、B分别在x轴和y轴上滑动,求线段AB中点的轨迹方程.
【解题指南】可设AB的中点坐标为(x,y),再求出A、B的坐标,由距离公式及线段AB的长即可得出方程;还可由AB的中点与坐标原点的距离为定长,得出轨迹为圆,从而得出方程.
----
幻灯片  39【规范解答】方法一:设AB的中点坐标为(x,y),因为线段AB的两端点A、B分别在x轴和y轴上滑动,所以A、B两点的坐标分别为A(2x,0)、B(0,2y),因为线段AB长为2a,所以                   
                     化简得:x2+y2=a2.
方法二:设AB的中点坐标为(x,y),依题设知,AB的中点到原点的距离为a,所以其轨迹为以原点为圆心,以a为半径的圆,其方程为x2+y2=a2.
----
幻灯片  40【反思·感悟】1.求点的轨迹时,关键是发现点满足的几何条件,寻找等式,得出方程;另外,注意圆的定义的应用,如果轨迹是圆,则可由圆心及半径直接写出圆的方程.
2.解答轨迹问题时,要注意验证应该删除的点或遗漏的点,以防增解或漏解.
----
幻灯片  41【变式训练】已知圆C:(x-1)2+(y-1)2=9,过点A(2,3)作圆C的任意弦,求这些弦的中点P的轨迹方程.
【解析】方法一:直接法
设P(x,y),由题意知圆心C(1,1).
∵P点是过点A的弦的中点,∴
又∵   =(2-x,3-y),   =(1-x,1-y),
∴(2-x)(1-x)+(3-y)(1-y)=0,
∴P点的轨迹方程为
----
幻灯片  42方法二:定义法
由已知知,PA⊥PC,∴由圆的性质知点P在以AC为直径的圆上,又圆心C(1,1),而AC中点为(   2),
|AC|=                   所以半径为
所求动点P的轨迹方程为
----
幻灯片  43【满分指导】与圆的方程有关的解答题的规范解答
【典例】(12分)(2011·新课标全国卷)在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.
(1)求圆C的方程;
(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.
----
幻灯片  44【解题指南】(1)可先求出曲线与坐标轴的交点坐标,再求圆的方程;
(2)直线与圆的方程联立,由       =0即可求出a的值.
【规范解答】(1)曲线y=x2-6x+1与坐标轴的交点为(0,1),
(3±    0).…………………………………………2分
故可设圆的圆心坐标为(3,t),
则有32+(t-1)2=(2   )2+t2,解得:t=1.…………………4分
则圆的半径为
所以圆的方程为:(x-3)2+(y-1)2=9. …………………6分
----
幻灯片  45(2)设A(x1,y1),B(x2,y2),其坐标满足方程组
消去y得到方程:2x2+(2a-8)x+a2-2a+1=0,
由已知可得判别式
Δ=(2a-8)2-4×2(a2-2a+1)=56-16a-4a2>0,
由根与系数的关系可得:
                         ①……………………9分
----
幻灯片  46由OA⊥OB可得:x1x2+y1y2=0.
又y1=x1+a,y2=x2+a,
所以2x1x2+a(x1+x2)+a2=0  ②
由①②可得a=-1,满足Δ>0,故a=-1.…………12分
----
幻灯片  47【阅卷人点拨】通过高考中的阅卷数据分析与总结,我们可以得到以下失分警示和备考建议:
----
幻灯片  48----
幻灯片  491.(2011·安徽高考)若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为(   )
(A)-1           (B)1
(C)3            (D)-3
【解析】选B.圆的方程x2+y2+2x-4y=0可变形为(x+1)2+(y-2)2=5,
所以圆心坐标为(-1,2),代入直线方程得a=1.
----
幻灯片  502.(2012·烟台模拟)直线2x-y-   =0与y轴的交点为P,点P把
圆 (x-1)2+y2=25的直径分为两段,则其长度之比为(   )
----
幻灯片  51【解析】选A.∵直线2x-y-   =0与y轴的交点P(0,   ),
P与圆心(1,0)的距离为2,而圆的半径为r=5,
∴点P将圆的直径分为3、7两段,故长度之比为
----
幻灯片  523.(2012·柳州模拟)直线   ax+by=1与圆x2+y2=1相交于A、B
两点(a、b是实数),且△AOB是直角三角形(O是坐标原点),
则点P(a,b)与点(0,1)之间的距离的最大值为(   )
(A)   +1            (B)2
(C)                 (D)   -1
----
幻灯片  53【解析】选A.∵△AOB为直角三角形,∴∠AOB=90°,
∴圆心到直线的距离                即2a2+b2=2,
          可得0≤b2≤2,
而P(a,b)与点(0,1)之间的距离为:
又∵           ∴当b=-   时,
----
幻灯片  544.(2011·辽宁高考)已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为_________________.
【解析】设C(x,0),由|CA|=|CB|,得
解得x=2.∴r=|CA|=
∴圆C的标准方程为(x-2)2+y2=10.
答案:(x-2)2+y2=10
----
【点此下载】