幻灯片 1第七节 双曲线 ---- 幻灯片 2三年18考 高考指数:★★★ 1.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. 2.了解双曲线的实际背景及双曲线的简单应用. 3.理解数形结合的思想. ---- 幻灯片 31.双曲线的定义、标准方程、几何性质是高考的重点,双曲线的离心率、渐近线或与其他知识结合是高考的热点; 2.多以选择题、填空题为主,属中低档题目. ---- 幻灯片 41.双曲线的定义 满足以下三个条件的点的集合是双曲线 (1)在平面内;(2)动点到两定点的距离_______________为一 定值;(3)这一定值一定要______两定点的距离. 之差的绝对值 小于 ---- 幻灯片 5【即时应用】 判断下列点的集合是否为双曲线.(请在括号内填写“是”或“否”) (1)平面内到点A(0,2),B(0,-2)距离之差等于2的点的集合; ( ) (2)平面内到点A(0,2),B(0,-2)距离之差的绝对值等于3的点的集合; ( ) (3)平面内到点A(0,2),B(0,-2)距离之差等于4的点的集合; ( ) ---- 幻灯片 6(4)平面内到点A(0,2),B(0,-2)距离之差的绝对值等于4的点的集合; ( ) (5)平面内到点A(0,2),B(0,-2)距离之差等于6的点的集合; ( ) (6)平面内到点A(0,2),B(0,-2)距离之差的绝对值等于6的点的集合. ( ) ---- 幻灯片 7【解析】由双曲线的定义可知:(1)点的集合是以A,B为焦点,实轴长为2的双曲线的一支;(2)点的集合是以A,B为焦点,实轴长为3的双曲线;(3)点的集合是以B为端点方向向下的一条射线;(4)点的集合是分别以A、B为端点方向向上、下的两条射线;(5)距离之差大于|AB|,所以点的集合不存在;(6)距离之差的绝对值大于|AB|,所以点的集合不存在. 答案:(1)否 (2)是 (3)否 (4)否 (5)否 (6)否 ---- 幻灯片 82.双曲线的标准方程和几何性质 ---- 幻灯片 9【即时应用】 (1)思考:双曲线离心率的大小与双曲线“张口”大小有怎样的 关系? 提示:因为离心率 所以,离心率越大, 就趋近于+∞,即两条渐近线所形成的 角(双曲线所在的区域)就越大,即双曲线的“张口”就越大; 离心率越小即接近1, 就趋近于0,即两条渐近线所形成的角 (双曲线所在的区域)就越小,即双曲线的“张口”就越小. ---- 幻灯片 10(2)已知曲线2x2-y2+6=0上一点P到一个焦点的距离为4,则它到另一个焦点的距离为________. 【解析】曲线2x2-y2+6=0的方程可化为: 所以a2=6,又因为点P到一个焦点的距离为4, 所以到另一焦点的距离为4+2 . 答案:4+2 ---- 幻灯片 11(3)已知双曲线 (a>0,b>0)的虚轴长为2,焦距为 2 ,则双曲线的渐近线方程为_____________. 【解析】依题意知:2b=2,2c=2 , 所以b=1,c= ,a= ,因此,双曲线的渐近线方程为: y=± x= . 答案:y= ---- 幻灯片 12 双曲线的定义、标准方程 【方法点睛】1.应用双曲线定义的注意事项 利用双曲线的定义解题时,要注意以下三点: (1)距离之差的绝对值; (2)2a<|F1F2|; (3)双曲线上任意一点与两焦点围成的“焦点三角形”中的数量关系. ---- 幻灯片 132.双曲线的焦点不确定时的标准方程 (1)当已知双曲线的焦点不明确而又无法确定时,其标准方程 可设为 (mn>0),这样可避免讨论和复杂的计算;也 可设为Ax2+By2=1(AB<0),这种形式在解题时更简便; (2)当已知双曲线的渐近线方程bx±ay=0,求双曲线方程时, 可设双曲线方程为b2x2-a2y2=λ(λ≠0),据其他条件确定λ 的值; (3)与双曲线 有相同的渐近线的双曲线方程可设为 (λ≠0),据其他条件确定λ的值. ---- 幻灯片 143.求双曲线标准方程的方法及步骤 (1)定义法:根据题设条件得出或已知曲线为双曲线,可直接求出a、b、c,得出双曲线方程; (2)待定系数法:先设出双曲线的标准方程,将题设条件代入方程确定相关系数,最后得出方程. 【提醒】用定义法求双曲线方程时,要注意焦点所在坐标轴的位置. ---- 幻灯片 15【例1】(1)设椭圆C1的离心率为 ,焦点在x轴上且长轴长为 26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等 于8,则曲线C2的标准方程为( ) (A) (B) (C) (D) (2)(2012·长安模拟)与双曲线 有相同的渐近线,且 过点 的双曲线方程为________________. ---- 幻灯片 16【解题指南】(1)利用C2上动点满足的几何条件判断曲线C2的形状,利用定义法求C2的方程. (2)先设出双曲线的方程,用待定系数法求解. 【规范解答】(1)选A.由已知可得在椭圆中a=13,c=5,根据双曲线的定义知曲线C2为双曲线且焦点在x轴上,由此知道双曲线中a=4,c=5,故双曲线中b=3,所以双曲线的标准方程为 ---- 幻灯片 17(2)因为所求双曲线与 有相同的渐近线,所以设所求 双曲线方程为 (λ≠0),又因为双曲线过点 所以 ,解得λ= , 所以所求双曲线方程为: ,即 答案: ---- 幻灯片 18【互动探究】本例(2)中“有相同的渐近线”改为“有相同的 焦点”,结果如何? 【解析】双曲线 中,c=5,焦点坐标为(-5,0)、 (5,0),又因为所求双曲线与双曲线 有相同的焦点, 所以可设双曲线方程为 , 又因为双曲线过点 ,所以 , 解得a2=23+ (舍去)或a2=23- , 所以双曲线方程为: ---- 幻灯片 19【反思·感悟】1.第(1)小题在利用定义求解时,需找出双曲线的焦点是在哪条轴上. 2.第(2)小题有相同渐近线的双曲线方程的设法只有一个参数,再需一个条件即可求解. ---- 幻灯片 20【变式备选】过双曲线x2-y2=8的左焦点F1有一条弦PQ交左支于P、Q两点,若|PQ|=7,F2是双曲线的右焦点,则△PF2Q的周长为______________. ---- 幻灯片 21【解析】因为x2-y2=8,所以2a= , 由题设及双曲线的定义得:|PF2|-|PF1|= , |QF2|-|QF1|= , 所以|PF2|+|QF2|-|PF1|-|QF1|= , 即|PF2|+|QF2|-|PQ|= , 又因为|PQ|=7,所以|PF2|+|QF2|=7+ , 因此,△PF2Q的周长为|PF2|+|QF2|+|PQ|=14+ . 答案:14+ ---- 幻灯片 22 双曲线的几何性质 【方法点睛】 1.双曲线的几何性质的关注点 双曲线的几何性质从以下三点关注: (1)“六点”:两焦点、两顶点、两虚轴端点; (2)“四线”:两对称轴(实、虚轴),两渐近线; (3)“两形”:中心、焦点、虚轴端点构成的三角形,双曲线上的一点(不包括顶点)与两焦点构成的三角形. ---- 幻灯片 232.双曲线的离心率与渐近线斜率的关系 (1)已知双曲线的离心率e求渐近线方程要注意 及判断焦点的位置; (2)已知渐近线方程y=mx(m>0)求离心率时,若焦点不确定时, 因此离心率有两种可能. 【提醒】双曲线中a、b、c之间的关系为c2=a2+b2,不要和椭圆中它们之间的关系混淆. ---- 幻灯片 24【例2】(1)(2011·福建高考)设圆锥曲线C的两个焦点分别为 F1,F2,若曲线C上存在点P满足|PF1|∶|F1F2|∶|PF2|=4∶3 ∶2,则曲线C的离心率等于( ) (A) (B) 或2 (C) (D) (2)已知双曲线 的离心率为2,焦点与椭圆 的焦点相同,那么双曲线的焦点坐标为_________,渐近线方 程为___________. ---- 幻灯片 25【解题指南】(1)由于已知圆锥曲线的两个焦点,所以该圆锥曲线为椭圆或双曲线,再由椭圆、双曲线的定义及离心率的定义即可求解. (2)由椭圆的焦点坐标得出双曲线的焦点坐标及c值,由离心率的值,可求出a,进而得出双曲线的渐近线方程. ---- 幻灯片 26【规范解答】(1)选A.∵|PF1|∶|F1F2|∶|PF2|=4∶3∶2, ∴可设|PF1|=4k,|F1F2|=3k,|PF2|=2k,k>0, 其中|F1F2|=2c=3k,∴c= . 若圆锥曲线C为椭圆,则|PF1|+|PF2|=2a=6k, ∴a=3k,∴ 若圆锥曲线C为双曲线,则|PF1|-|PF2|=2a=2k, ∴a=k,∴ ,∴e的取值为 . ---- 幻灯片 27(2)椭圆的焦点坐标为(4,0),(-4,0),故c=4, 且满足 =2,故a=2, 所以双曲线的渐近线方程为 答案:(4,0),(-4,0) ---- 幻灯片 28【互动探究】在本例(1)中,若圆锥曲线为双曲线且c=6,其他条件不变,求双曲线的焦点到其渐近线的距离. 【解析】因为圆锥曲线为双曲线且c=6,又因为 |PF1|∶|F1F2|∶|PF2|=4∶3∶2, 所以|PF1|=16,|PF2|=8, 2a=16-8=8,即a=4,所以 ---- 幻灯片 29当双曲线的焦点在x轴上时,一个焦点为(6,0),一条渐近线方 程为 x-2y=0,焦点到渐近线的距离为2 ; 当双曲线的焦点在y轴上时,一个焦点为(0,6),一条渐近线方 程为2x- y=0,焦点到渐近线的距离为2 . ---- 幻灯片 30【反思·感悟】1.第一小题应讨论曲线的类型. 2.第二小题关键是利用双曲线的方程与其渐近线方程之间的关系求解. ---- 幻灯片 31【变式备选】已知抛物线y2=2px(p>0)的焦点F恰好是双曲线 的右焦点,且双曲线过点 则该双曲线的 渐近线方程为____________. 【解析】抛物线y2=2px的焦点为 双曲线 的右 焦点为 ,∴ ,即p2=4(a2+b2).因为双曲线过 点 所以 ---- 幻灯片 32∴9a2-4b2=p2=4(a2+b2),∴8b2=5a2, ∴ 渐近线方程为 . 答案: ---- 幻灯片 33 与双曲线有关的综合问题 【方法点睛】 1.直线与双曲线的位置关系 判断直线l与双曲线E的位置关系时,通常将直线l的方程Ax+By+C=0(A、B不同时为0)代入双曲线E的方程F(x,y)=0,消 去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程. 即 消去y后得ax2+bx+c=0. ---- 幻灯片 34 直 线 与 双 曲 线 方程特征 交点个数 位置关系 a=0 a≠0,△>0 a≠0,△=0 a≠0,△<0 1 2 1 0 直线与双曲线的渐近线平行,两者相交 相交 相切 相离 ---- 幻灯片 352.解决与双曲线有关的参数的取值范围或最值问题的常用方法 (1)当题目的条件和结论能明显体现几何特征及意义时,可考虑利用数形结合法求解或构造参数满足的不等式(组),通过解不等式(组)求得参数的取值范围; (2)当题目的条件和结论能体现一种明确的函数关系时,则可先建立目标函数,进而转化为求解函数的问题. 【提醒】解决直线与双曲线相交问题时,若涉及到弦的中点或斜率,一般用点差法求解. ---- 幻灯片 36【例3】(2012·合肥模拟)已知双曲线C: (a>0)与直 线l:x+y=1相交于两个不同的点A、B. (1)求双曲线C的离心率e的取值范围. (2)设直线l与y轴交点为P,且 求a的值. 【解题指南】(1)将直线方程代入双曲线方程消去y,整理成关 于x的一元二次方程,得a的范围,利用a的取值范围求解; (2)设出A,B的坐标,利用(1)中一元二次方程的根与系数的关 系求解. ---- 幻灯片 37【规范解答】(1)由双曲线C与直线相交于两个不同的点,知 方程组 有两个不同的解,消去y并整理得: (1-a2)x2+2a2x-2a2=0 ①, 解得0<a< 且a≠1, ---- 幻灯片 38双曲线的离心率 ∵0<a< 且a≠1, ∴e> 且e≠ , 即离心率e的取值范围为( , )∪( ,+∞). ---- 幻灯片 39(2)设A(x1,y1),B(x2,y2),P(0,1), ∵ ∴(x1,y1-1)= (x2,y2-1), 得x1= x2, 由于x1,x2是方程①的两个根, ---- 幻灯片 40∴x1+x2= x1x2= 即 消去x2, 得 解得 ---- 幻灯片 41【反思·感悟】双曲线的综合问题主要为直线与双曲线的位置 关系.解决这类问题的常用方法是设出直线方程或双曲线方 程,然后把直线方程和双曲线方程联立组成方程组,消元后转 化成关于x(或y)的一元二次方程,利用根与系数的关系,整体 代入的思想解题.设直线与双曲线交于A(x1,y1),B(x2,y2)两 点,直线的斜率为k,则|AB|= |x1-x2|. ---- 幻灯片 42【变式训练】已知双曲线E的中心为原点,F(3,0)是E的焦 点,过F的直线l与E相交于A,B两点,且AB的中点为N(-12, -15),则E的方程为( ) (A) (B) (C) (D) 【解析】选B.设双曲线的标准方程为 (a>0,b>0), 由题意知c=3,a2+b2=9, 设A(x1,y1),B(x2,y2), ---- 幻灯片 43则有: 两式作差得: 又AB的斜率是 即 所以4b2=5a2. 将4b2=5a2代入a2+b2=9得a2=4,b2=5, 所以双曲线的标准方程为 故选B. ---- 幻灯片 44【易错误区】双曲线几何性质的解题误区 【典例】(2011·山东高考)已知双曲线 (a>0,b>0) 的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦 点为圆C的圆心,则该双曲线的方程为( ) (A) (B) (C) (D) ---- 幻灯片 45【解题指南】先求出圆C的圆心坐标、半径,再写出渐近线方程,由圆心到渐近线的距离等于半径即可得到a,b的关系,再由双曲线的右焦点为圆C的圆心知c值,即可求出结果. ---- 幻灯片 46【规范解答】选A.双曲线的渐近线方程为bx+ay=0和bx-ay=0, 圆心为(3,0),半径r=2.由圆心到渐近线的距离为圆的半径得: 即4a2=5b2,又因为双曲线的右焦点为圆C的圆 心,所以c=3,即9=a2+b2,所以,a2=5,b2=4. 所以该双曲线的方程为 ---- 幻灯片 47【阅卷人点拨】通过高考中的阅卷数据分析与总结,我们可以得到以下误区警示和备考建议: ---- 幻灯片 48---- 幻灯片 491.(2011·安徽高考)双曲线2x2-y2=8的实轴长是( ) (A)2 (B)2 (C)4 (D)4 【解析】选C.将双曲线2x2-y2=8化成标准方程 ,则 a2=4,所以实轴长2a=4. ---- 幻灯片 502.(2011·湖南高考)设双曲线 (a>0)的渐近线方程为 3x±2y=0,则a的值为( ) (A)4 (B)3 (C)2 (D)1 【解析】选C.由 可得到双曲线的渐近线方程为y= ± x,又已知双曲线的渐近线方程为3x±2y=0,根据直线重 合的条件可得到a=2. ---- 幻灯片 513.(2011·新课标全国卷)设直线l过双曲线C的一个焦点,且 与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴 长的2倍,则C的离心率为( ) (A) (B) (C)2 (D)3 ---- 幻灯片 52【解析】选B.不妨设双曲线的焦点在x轴上(焦点在y轴上的离 心率与焦点在x轴上的离心率一样),方程为 (a>0,b >0),设F(c,0),A(x1,y1),B(x2,y2),由l过点F且与对称轴 垂直,可得x1=x2=c,将其代入双曲线的方程得|y1|=|y2| = ,故|AB|= ,依题意,|AB|=2a×2=4a, ∴ =4a,化简整理得b2=2a2,解得e= . ---- 幻灯片 534.(2011·江西高考)若双曲线 的离心率e=2,则 m=___________. 【解析】由题意可得a2=16,b2=m, 故c2=a2+b2=16+m,又∵ ∴ ∴m=48. 答案:48 ---- 幻灯片 545.(2011·辽宁高考)已知点(2,3)在双曲线C: (a> 0,b>0)上,C的焦距为4,则它的离心率为___________. 【解析】由题意可得 解之得 所以所求离心率 答案:2 ---- 幻灯片 55---- 幻灯片 56----

【点此下载】