10.2 排列与组合 一、选择题 1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 (  ). A.42 B.30 C.20 D.12 解析 可分为两类:两个节目相邻或两个节目不相邻,若两个节目相邻,则有AA=12种排法;若两个节目不相邻,则有A=30种排法.由分类计数原理共有12+30=42种排法(或A=42). 答案 A 2.a∈N*,且a<20,则(27-a)(28-a)…(34-a)等于(  ) A.A B.A C.A D.A 解析 A=(27-a)(28-a)…(34-a). 答案 D 3.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有(  ) A.252个 B.300个 C.324个 D.228个 解析 (1)若仅仅含有数字0,则选法是CC,可以组成四位数CCA=12×6=72个; (2)若仅仅含有数字5,则选法是CC,可以组成四位数CCA=18×6=108个; (3)若既含数字0,又含数字5,选法是CC,排法是若0在个位,有A=6种,若5在个位,有2×A=4种,故可以组成四位数CC(6+4)=120个. 根据加法原理,共有72+108+120=300个. 答案 B 4.2013年春节放假安排:农历除夕至正月初六放假,共7天.某单位安排7位员工值班,每人值班1天,每天安排1人.若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有(  ) A.1 440种 B.1 360种 C.1 282种 D.1 128种 解析 采取对丙和甲进行捆绑的方法: 如果不考虑“乙不在正月初一值班”,则安排方案有:A·A=1 440种, 如果“乙在正月初一值班”,则安排方案有:C·A·A·A=192种, 若“甲在除夕值班”,则“丙在初一值班”,则安排方案有:A=120种. 则不同的安排方案共有1 440-192-120=1 128(种). 答案 D 5.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有(  ). A.16种 B.36种 C.42种 D.60种 解析 若3个不同的项目投资到4个城市中的3个,每个城市一项,共A种方法;若3个不同的项目投资到4个城市中的2个,一个城市一项、一个城市两项共CA种方法,由分类计数原理知共A+CA=60种方法. 答案 D 6.某校开设A类选修课3门,B类选修课4门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有(  ). A.30种 B.35种 C.42种 D.48种 解析 法一 可分两种互斥情况:A类选1门,B类选2门或A类选2门,B类选1门,共有CC+CC=18+12=30(种)选法. 法二 总共有C=35(种)选法,减去只选A类的C=1(种),再减去只选B类的C=4(种),共有30种选法. 答案 A 7.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是(  ). A.24 B.48 C.72 D.96 解析 A-2AAA-AAA=48. 答案 B 二、填空题 8.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有________种.(以数字作答) 解析 ①只有1名老队员的排法有C·C·A=36种. ②有2名老队员的排法有C·C·C·A=12种; 所以共48种. 答案 48 9.将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A班,那么不同的分配方案种数是________. 解析 将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排一名学生有CA种分配方案,其中甲同学分配到A班共有CA+CA种方案.因此满足条件的不同方案共有CA-CA-CA=24(种). 答案 24 10.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求男、女医生都有,则不同的组队方案共有________种. 解析 分1名男医生2名女医生、2名男医生1名女医生两种情况,或者用间接法. 直接法:CC+CC=70. 间接法:C-C-C=70. 答案 70 11.有五名男同志去外地出差,住宿安排在三个房间内,要求甲、乙两人不住同一房间,且每个房间最多住两人,则不同的住宿安排有________种(用数字作答). 解析 甲、乙住在同一个房间,此时只能把另外三人分为两组,这时的方法总数是CA=18,而总的分配方法数是把五人分为三组再进行分配,方法数是A=90,故不同的住宿安排共有90-18=72种. 答案 72 12.某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出有________种不同的调度方法(填数字). 解析 先从除甲、乙外的5辆车任选2辆有C种选法,连同甲、乙共4辆车,排列在一起,选从4个位置中选两个位置安排甲、乙,甲在乙前共有C种,最后,安排其他两辆车共有A种方法,∴不同的调度方法为C·C·A=120种. 答案 120 三、解答题 13.有六名同学按下列方法和要求分组,各有不同的分组方法多少种? (1)分成三个组,各组人数分别为1、2、3; (2)分成三个组去参加三项不同的试验,各组人数分别为1、2、3; (3)分成三个组,各组人数分别为2、2、2; (4)分成三个组去参加三项不同的试验,各组人数分别为2、2、2; (5)分成四个组,各组人数分别为1,1,2,2; (6)分成四个组去参加四项不同的活动,各组人数分别为1、1、2、2. 解析 (1)即CCC=60. (2)即CCCA=60×6=360. (3)即=15. (4)即CCC=90. (5)即·=45. (6)CCCC=180. 14.要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法? (1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生甲和女生乙不能同时入选;(5)男 生甲、女生乙至少有一个人入选. 解析 (1)C-C=771; (2)C+CC+CC=546; (3)CC=120; (4)C-CC=672; (5)C-C=540. 15.在m(m≥2)个不同数的排列p1p2…pm中,若1≤i<j≤m时pi>pj(即前面某数大于后面某数),则称pi与pj构成一个逆序,一个排列的全部逆序的总数称为该排列的逆序数.记排列(n+1)n(n-1)…321的逆序数为an.如排列21的逆序数a1=1,排列321的逆序数a2=3,排列4 321的逆序数a3=6. (1)求a4、a5,并写出an的表达式; (2)令bn=+,证明2n<b1+b2+…+bn<2n+3,n=1,2,…. 解析 (1)由已知条件a4=C=10,a5=C=15,则an=C=. (2)证明 bn=+=+=2+2 ∴b1+b2+…+bn =2n+2 =2n+2, ∴2n<b1+b2+…+bn<2n+3. 16.已知10件不同的产品中有4件次品,现对它们一一测试,直至找到所有4件次品为止. (1)若恰在第2次测试时,才测试到第一件次品,第8次才找到最后一件次品,则共有多少种不同的测试方法? (2)若至多测试6次就能找到所有4件次品,则共有多少种不同的测试方法? 解析 (1)若恰在第2次测试时,才测到第一件次品,第8次才找到最后一件次品,若是不放回的逐个抽取测试. 第2次测到第一件次品有4种抽法; 第8次测到最后一件次品有3种抽法; 第3至第7次抽取测到最后两件次品共有A种抽法;剩余4次抽到的是正品,共有AAA=86 400种抽法. (2)检测4次可测出4件次品,不同的测试方法有A种, 检测5次可测出4件次品,不同的测试方法有4AA种; 检测6次测出4件次品或6件正品,则不同的测试方法共有4AA+A种. 由分类计数原理,满足条件的不同的测试方法的种数为 A+4AA+4AA+A=8 520.

【点此下载】