2014高考数学(文)一轮:一课双测A+B精练(十六) 导数的应用(二)  1.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意正数a,b,若a0),则获得最大利润时的年产量为(  ) A.1百万件 B.2百万件 C.3百万件 D.4百万件 3.已知函数f(x)是R上的偶函数,且在(0,+∞)上有f′(x)>0,若f(-1)=0,那么关于x的不等式xf(x)<0的解集是________. 4.直线y=a与函数f(x)=x3-3x的图象有相异的三个公共点,则a的取值范围是________. 5.已知函数f(x)=x2+ln x. (1)求函数f(x)在[1,e]上的最大值和最小值; (2)求证:当x∈(1,+∞)时,函数f(x)的图象在g(x)=x3+x2的下方. 6.(2012·乌鲁木齐诊断性测验)已知函数f(x)=ex-x,其中m为常数. (1)若对任意x∈R有f(x)≥0成立,求m的取值范围; (2)当m>1时,判断f(x)在[0,2m]上零点的个数,并说明理由. 7.(2013·泰安模拟)某种产品每件成本为6元,每件售价为x元(6-2). (1)当t<1时,求函数y=f(x)的单调区间; (2)设f(-2)=m,f(t)=n,求证:m1,f′(x)>0,f(x)单调递增; 故当x=m时,f(m)为极小值,也是最小值. 令f(m)=1-m≥0,得m≤1, 即对任意x∈R,f(x)≥0恒成立时,m的取值范围是(-∞,1]. (2)由(1)知f(x)在[0,2m]上至多有两个零点,当m>1时,f(m)=1-m<0. ∵f(0)=e-m>0,f(0)·f(m)<0, ∴f(x)在(0,m)上有一个零点. 又f(2m)=em-2m,令g(m)=em-2m, ∵当m>1时,g′(m)=em-2>0, ∴g(m)在(1,+∞)上单调递增. ∴g(m)>g(1)=e-2>0,即f(2m)>0. ∴f(m)·f(2m)<0,∴f(x)在(m,2m)上有一个零点. 故f(x)在[0,2m]上有两个零点. 7.解:(1)设-u=k2, ∵售价为10元时,年销量为28万件, ∴-28=k2,解得k=2. ∴u=-22+ =-2x2+21x+18. ∴y=(-2x2+21x+18)(x-6) =-2x3+33x2-108x-108(60; 当x∈(9,11)时,y′<0. ∴函数y=-2x3+33x2-108x-108在(6,9)上是递增的,在(9,11)上是递减的. ∴当x=9时,y取最大值,且ymax=135, ∴售价为9元时,年利润最大,最大年利润为135万元. B级 1.解:(1)f′(x)=(2x-3)ex+ex(x2-3x+3)=exx(x-1), ①当-20,f(x)单调递增, 当x∈(0,t]时,f′(x)<0,f(x)单调递减. 综上,当-2-2, h′(t)=(2t-3)et+et(t2-3t+3)=ett(t-1)(t>-2). 故h(t),h′(t)随t的变化情况如下表: t (-2,0) 0 (0,1) 1 (1,+∞)  h′(t) + 0 - 0 +  h(t)  极大值  极小值   由上表可知h(t)的极小值为h(1)=e-=>0,又h(-2)=0,故当-2h(-2)=0,即h(t)>0, 因此,n-m>0,即m0,得x<-1或x>1; 由f′(x)<0,得-13. 故实数k的取值范围是(3,+∞). MZP

【点此下载】